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 Optimization of Drying Process of Plastic Granules 

Based on Stochastic Method with Neuro Regression 

Approach 

 

Abstract 

Polymers contain moisture due to their chemical structure. Moisture in polymers 

is important for the quality of the final product and ease of processing.  For this 

reason, polymers are subjected to drying before processes such as injection and 

extrusion. Drying is carried out at temperatures and times specified by the 

polymer suppliers. Over-drying leads to increased viscosity (processing difficulty) 

while under-drying leads to flow marks, burrs, and reduced tensile strength and 

impact strength. Over-drying also causes excessive energy consumption. In this 

study, the drying process optimization of Acrylonitrile Butadiene Styrene (ABS) 

polymer was studied. As the first part of the data collection part, different 

scenarios were determined with the Desing of Experiment (DoE) approach. For 

these scenarios, drying time and temperature values reported by ABS polymer 

manufacturers were chosen as design parameters. ABS granules were dried with a 

desiccant type dryer at different temperatures. For the outputs, samples were taken 

at certain periods and the moisture by weight and energy consumption of the 

samples were determined by energy analyzer and moisture meter. In the second 

part, Wolfram Mathematica program is used for numerical operations. 

Mathematical models were constructed using nonlinear multiple neuro-regression 

modeling to describe the phenomenon between input and output parameters. R2 

model evaluation criterion was used to test the success of the proposed models in 

the training, testing and verification stages. The engineering limits of the models 

were checked and the model that gave the best results was selected. Finally, 
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optimization of system parameters was performed using different stochastic 

optimization methods Differential Evolution, Nelder–Mead, Simulated Annealing 

and Random Search. 

Keywords: ABS, drying process, neuro-regression approach, stochastic 

optimization, energy consumption 
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Nöro Regresyon Yaklaşımı Kullanılarak Stokastik 

Metot Tabanlı Plastik Granüllerin Kurutma Prosesi 

Optimizasyonu 

 

Öz 

Polimerler kimyasal yapısı dolayısıyla nem içermektedir. Polimerlerde bulunan 

nem son ürünün kalitesi ve proses kolaylığı açısından önem arz etmektedir.  Bu 

sebeple polimerler enjeksiyon, ekstrüzyon gibi proseslerden önce kurutma 

işlemine tabii tutulurlar. Kurutma işlemi polimer tedarikçileri tarafından belirtilen 

sıcaklık ve sürelerde gerçekleştirilir. Fazla kurutma viskozite artışına (proses etme 

zorluğuna), az kurutma ise akış izleri, çapak, çekme dayanımı ve darbe dayanımı 

düşüşüne yol açmaktadır. Bunlara ek olarak, fazla kurutma işlemi, fazla enerji 

tüketimine sebebiyet vermektedir. Bu çalışmada, Akrilonitril Bütadien Stiren 

(ABS) polimerinin kurutma proses optimizasyonu üzerine çalışma 

gerçekleştirilmiştir. Veri toplama bölümünde ilk kısım olarak Deney Tasarımı 

(DoE) yaklaşımıyla farklı senaryolar belirlenmiştir. Bu  senaryolar için, ABS 

polimer üreticileri tarafından bildirilen kurutma zamanı ve sıcaklık değerleri 

dizayn parametersi olarak seçilmiştir. ABS granüller farklı sıcaklıklarda desikant 

tipi kurutucu ile kurutma işlemine tabii tutulmuştur. Çıktılar için, belirli 

periyotlarda numune alınmış, enerji analizatörü ve nem ölçüm cihazı ile 

numunelerin ağırlıkça nemi  ve enerji tüketimi tespit edilmiştir. İkinci bölümde, 

sayısal işlemler için Wolfram Mathematica programı kullanılmıştır. Doğrusal 

olmayan çoklu nonlineer nöro-regresyon modellemesi kullanılarak girdi ve çıktı 

parameterleri arasındaki fenomeni tanımlamak için matematiksel modeller 

oluşturulmuştur. Önerilen modellerin eğitim, test ve doğrulama aşamalarındaki 

başarılarını test etmek için R2 model değerlendirme kriteri kullanılmıştır. 
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Modellerin mühendislik sınırları kontrol edilmiş ve en iyi sonucu veren model 

seçilmiştir. Son olarak, farklı stokastik optimizasyon yöntemleri, Differential 

Evolution, Nelder–Mead, Simulated Annealing ve Random Search, kullanılarak 

sistem parametrelerinin optimizasyonu gerçekleştirilmiştir 

Anahtar Kelimeler: ABS, kurutma prosesi, nöro-regresyon yaklaşımı, stokastik 

optimizasyon, enerji tüketimi 
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Chapter 1 

1. Introduction 

1.1. Literature Survey 

Plastic injection molding is a widely used method for producing plastic products 

[1]. It involves melting the material with the aid of a screw and an external 

heating device, and then injecting it into a mold to form the desired product as the 

mold cools [2]. Injection molding has been applied in various fields, from daily 

necessities to aerospace components [3]. The process offers advantages such as 

the reduction of density and elimination of sink marks, and mold designers are 

using Finite Element Method (FEM) for optimization [4]. Different parameters, 

such as injection pressure, holding pressure, and injection speed, can affect the 

quality and dimensional stability of the plastic part. To ensure high-quality 

products and reduce dependency on human expertise, artificial intelligence 

approaches are being used to model the injection molding process [5]. 

Plastic injection molding processes involve several steps, including drying 

treatment of plastic particles, melting the plastic, injecting the molten plastic into 

a mold cavity, cooling and solidification, and separating the formed plastic 

product from the mold [6]. 

Polymer drying can be achieved through various methods which one is first step 

of these steps. One method involves using a polymer plastic drying device, which 

includes a working cavity and a sliding support plate [7]. Another method 

involves adjusting the viscosity of a polymer solution and spray-drying it to obtain 

polymer powder with low water content [8]. Computer simulations have shown 

that polymer-polymer mixtures stratify into layers during drying, with shorter 

polymers enriched near the drying interface [9]. A non-drying polymer hydrogel 

can also be produced by containing a deliquescent substance in a polymer 

network, which prevents drying under atmospheric conditions [10]. Additionally, 
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a method for drying a polymer involves spraying a polymer-containing solution 

into a gas and then removing the solvent by introducing the droplets into a second 

solvent [11]. 

Polymer drying optimization is a continuing challenge in various industries. 

Different methods and parameters have been explored to achieve optimal 

conditions for polymer drying. Erfando et al. developed a genetic algorithm to 

optimize parameters such as injection rate, injection time, and injection pressure 

for polymer injection in oil recovery [12]. Tavcar et al. developed an optimization 

algorithm for polymer gears, considering criteria such as stress, temperature, 

wear, and cost [13]. Kurganov et al. proposed expressions to find optimal 

conditions for hydrodynamic chromatography analysis of polymers [14]. Al 

Momani and Örmeci investigated the use of an in-line UV-vis spectrophotometer 

to optimize polymer dose during sludge dewatering [15]. Marchetti et al. 

described a mathematical programming model for optimizing the balance of 

feedstocks to manufacture multiple polymer grades [16]. These studies highlight 

the importance of optimizing various parameters and criteria to achieve efficient 

polymer drying processes. 

1.2. Objectives and Motivation 

The reasons for choosing this thesis study can be listed as follows; 

• Moisture in polymers is important for the quality of the final product and 

ease of processing. 

•  Polymers are subjected to drying before processes such as injection and 

extrusion. 

• Over-drying leads to increased viscosity (processing difficulty) while 

under-drying leads to flow marks, burrs, and reduced tensile strength and 

impact strength. 

• Over-drying also causes excessive energy consumption. The aim of 

engineering applications is to have the best mechanical properties and at 

the same time to minimize the cost. 
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• As it is an integral part of optimization life, it is frequently used and must 

be used in engineering applications in order to reduce the cost in the first 

place. 

The aims of this study can be listed as follows; 

• To create a mathematical model of the drying process parameters and the 

moisture content by weight of the ABS polymer, 

• Reaching minimum energy consumption with optimum drying parameters, 

•  To investigate the effects of drying parameters on polymer moisture. 
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Chapter 2 

2. Mathematical Background 

2.1. Introduction 

The background of the mathematical tools used throughout the thesis is 

introduced in this chapter. The primary goal of this chapter is to use the 

techniques employed in this study to briefly explain the procedures for design-

based optimization in engineering. The design of experiments, mathematical 

modeling, and optimization techniques are discussed in this context. All of these 

processes for an ideal design process are shown in Figure 2.1. Additionally, the 

optimization techniques used in the Mathematica software, the instrument used to 

carry out the mathematical procedures in this study, are mentioned.  

 

Figure 2.1: Flowchart illustrating the processes in an ideal design process 

2.2. Design of Experiments (DOE) 

In manufacturing processes, experiments are conducted to increase our knowledge 

and understanding of them. Hence, the correlations between the main factors of 

the inputs and the output behaviors can be observed [17, 18]. One-Variable-At-a-

Time (OVAT) is one of the most common engineering techniques. The output 

from these operations could be inaccurate and wasteful as a result of this strategy. 

Furthermore, it is well recognized that not every parameter affects results equally. 

Therefore, a complex design seeks to establish the degree to which process 
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parameters affect the result [17, 19, 20]. Design of experiment (DoE) is the best 

course of action when a component's specific characteristic is influenced by a 

number of different factors [17, 18, 21]. DoE is a useful method for identifying 

new processes, getting a comprehensive understanding of current processes, and 

improving their efficiency. By reducing time and cost, this method ensures great 

efficiency and more reliable process results. 

The choice of the best statistical tools is crucial since noise can significantly alter 

the outcomes of data analysis. The three guiding concepts of statistical techniques 

in DoE are replication, randomization, and blocking. In order to get more accurate 

results and reduce experimental error, replication is based on repeating 

experimental runs. The experiments are carried out in a random order according to 

the randomization process. Blocking is used to stop the main effects of vagueness 

and isolate known systematic bias impacts [17, 19]. The proper DoE approach is 

determined by the objectives of the experiments and the number of elements to be 

addressed. The remainder of this section lists and briefly describes some DoE 

methods, including Randomized Complete Block Design, Full Factorial, 

Fractional Factorial, Central Composite, Box-Behnken, Taguchi, Latin 

Hypercube, and D-Optimal Design [19]. It should be noted that the techniques 

presented here are not a complete list, as it is intended to inform readers about the 

subject by presenting approaches commonly used in practice. 

2.2.1. Randomized Complete Block Design 

The distribution of treatment for experimental constituents is not subject to any 

tight restrictions. However, there are instances where the data from studies 

changes greatly in the real world. The design created in such circumstances is 

known as a Randomized Complete Block Design (RCBD). The main goal of 

blocking is to maximize variance between blocks while minimizing variation 

between experimental units within a block. 
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Advantages  

• It is possible to remove the treatments or replicates from the analysis. 

• More frequently than others, some multiple treatments can be repeated. 

• There are no strict limitations on the quantity of treatments or replicates. 

• Despite the fact that the experimental error is not homogeneous, there can 

be meaningful comparisons. [17, 22]. 

Disadvantages  

• For a small number of treatments, the df error is less. 

• If there are too many treatments and significant differences between 

experimental units, a substantial error term may be acquired. 

When data are lacking, RCBD performs poorly in terms of experimental 

effectiveness. 

2.2.2. Full Factorial Design 

In industries like manufacturing, factororial designs with two or three levels are 

typically acknowledged as the most frequently used DoE approach since they may 

help generate reliable data on the effects of the variables. There are two types of 

factorial designs: full and fractional. In a full factorial design, each factor setting 

is combined with every other factor setting to identify the experimental runs. Full 

factorial design involves a lot of runs and is not very useful if the concerned 

response is influenced by five or more factors. The fractional factorial design may 

be advantageous in such cases [17, 18]. 

2.2.3. Fractional Factorial Design  

In practice, there is typically not enough time or funding to conduct tests using a 

full factorial design. The main influences and two-order interactions can be 

obtained by using a portion of the full factorial experiment, which cuts down on 

the time and expense of the experiments in cases where some higher-order 

correlations are not necessary. With a minimal number of workouts or 
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experimental runs, fractional factorial design, a type of orthogonal array layout, 

enables researchers to examine the most crucial and necessary effects of 

relationships [17, 18, 22, 23]. 

2.2.4. Central Composite Design  

One of the most popular response surface designs, central composite design 

(CCD), generates a factorial design and is carried out using five factorial levels. 

One of the most significant benefits of CCD is the ability to check the corner 

points. Therefore, if the curvature is negligible, the task is completed. On the other 

hand, the main task is to create the star runs if the curvature is significant [21]. 

2.2.5. Box-Behnken Design 

  A popular DoE method that works with three factorial levels is Box-Behnken 

design. There are fewer runs as a result of this method's reliance on the midpoints 

rather than the cube edge corner points. With the exception of CCD, all runs must 

be completed in Box Behnken. Furthermore, it is superior in which cases the 

curvature specified in the screening experiment is likely necessary [17].  

2.2.6. Taguchi Design 

Taguchi design is a statistical technique that significantly improves engineering 

productivity. The primary objective of the Taguchi method is to keep output 

fluctuation to a minimum, even in the presence of noise. Therefore, by taking into 

account the noise causes and the error amount, this technique helps to ensure 

product quality. Additionally, Taguchi design concentrates on enhancing the 

fundamental purpose of the design process, allowing for the presentation of 

flexible designs [17, 22]. 

 Advantages  

• It is a versatile tool since it is simple to adapt to different engineering 

problems.  
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• It improves the product quality, within some qualification constraints, by 

considering a mean production feature value comparable to the final one 

rather than just a value.  

•  It makes it possible to study the various variables without performing an 

excessively high number of runs. 

Disadvantages  

• The obtained results are comparative and do not accurately identify which 

parameter has the greatest influence on the desired attribute.  

• Because orthogonal arrays only consider specific parameter combinations, 

it cannot be utilized to determine how all variables interact.  

• Parameter interactions are hard to be considered.  

It is offline, which makes it inconvenient for processes involving dynamic 

changes, such those seen in computer simulations. 

2.2.7. Latin Hypercube Design 

This approach uses a Multidimensional Distribution to generate a nearly random 

sample of parameter values. Additionally, Latin Hypercube design is a 

generalization of the Latin Square concept to an arbitrary number of dimensions. 

The initial stage in this method is to decide how many sample points will be used, 

along with which row and column each sample point was used for. Additionally, 

whereas standard random sampling only yields a set of random numbers without 

assurance, this approach guarantees a set of random numbers that accurately 

reflect the fluctuation [17, 19]. 

2.2.8. Optimal Design (D-Optimal) 

D-Optimal is a computer-aided design. It contains the best part of all possible 

experiments. The final design might vary based on the tool used so software tools 

may have diverse processes to create D-Optimal designs [17, 23]. Based on a 

predefined factor and the number of runs, the selection technique produces the 
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optimal design. When conventional design methodologies are not used, the D-

optimal design approach is very useful. These cases are: 

• When supplies of factor configurations are restrained.  

• If the number of experimental runs must be reduced. 

• When using the operation and mixing variables in the same design.  

• When previously performed experiments must be comprised.  

• In the event that the experimental area is unstable [17, 20, 21]. 

2.3. Mathematical Modeling 

Mathematical modeling plays a key role in design-based engineering optimization 

studies to obtain a robust objective function for the problem. Therefore, it's crucial 

to use a suitable data modeling methodology in order to precisely define the 

phenomenon under consideration. Researchers use many modeling techniques in 

this way, including Artificial Neural Networks (ANN), Finite Difference 

Technique (FDT), Response Surface Methodology (RSM), and Regression 

Analysis. Nevertheless, studies preferred popular methods regarding engineering 

optimization have some inadequate approaches, as follows: 

(i) Updating one input while keeping the others constant is not a satisfying 

explanation because it ignores the nonlinear effects of input variables. Therefore, 

from the perspective of optimization, it is necessary to take into account the 

interactions between all experimental and constructional parameters. 

(ii) The most of data modeling methods involve using one or two traditional 

regression models as the problem's objective function. In order to calculate how 

closely the results of the fitted model match the experimental data, R2 values are 

calculated. These values are used to assess the model's reliability. However, 

achieving a high R2 value does not always mean a good fit for the engineering 

systems. In addition, the model describes only the experimental results rather than 

the fundamental behaviour of the phenomenon. So various regression model types 

and approaches should be taken into consideration. 
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(iii) Another important point is the model function boundedness. Since all 

engineering parameters are known to be finite, the function should be bounded in 

order to accurately represent engineering systems. Hence, the proposed model 

should be checked to determine whether it is limited to the parameter intervals of 

the respective phenomenon. 

(iv) Although it is vital to unveil the inherent behaviors of the stochastic search 

processes, some studies on engineering systems optimization do not consider the 

reliability, sensitivity, and robustness of the algorithms.  

In order to overcome the abovementioned deficiencies of the most widely used 

modeling and optimization approaches, it has been stated in the literature that it is 

possible to perform realistic engineering design optimization studies [24, 25]. In 

order to present a thorough view of the modeling-design-optimization processes, a 

multiple nonlinear neuro-regression analysis is introduced with the simultaneous 

use of four distinct direct search algorithms as part of the optimization process. 

2.3.1. Neuro Regression Approach 

The neuro-regression approach is a hybrid data modeling technique that improves 

prediction accuracy by combining the advantages of regression analysis and 

Artificial Neural Networks (ANN). This method begins by randomly splitting the 

total amount of data into three sets that will be used for training, testing and 

validation, respectively. By specifying the regression models and their 

coefficients, the training step aims to reduce the error between the experimental 

and predicted values. Accordingly, testing data are used to obtain the estimated 

results by minimizing the effects of regression model inconsistencies, and this 

step gives an understanding of the candidate models’ prediction capability. R2 

values of the models are achieved in the training, testing and valdiation steps. A 

boundedness check is performed on appropriate models in terms of R2 values as 

the approach's final step. In this regard, the minimum and maximum values in the 

specified interval for each design variable serve as the boundary of the candidate 

models. This step is essential to determine whether the models are applicable to 

the problem. As a result, it is expected that the selected models will satisfy each 

required robustness criterion. 
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2.3.2. Nonlinear Regression Analysis 

Nonlinear regression models are those that do not have linear parameters. They 

can be used for three different purposes [26]: 

• To test the validity of the model (or compare the hypothesis), 

• To characterize the model (i.e., parameter prediction), 

• To calculate the system's behavior (interpolation and calibration). 

The general form of the nonlinear regression model is as follows: 

𝑦 = (𝑥, 𝛽) + 𝜀                                                     (2.1) 

where x, β, and ε are vector of p predictors, a vector of k parameters, and an error 

term, respectively. f(-) represents a known regression function. 

Mathematical modeling procedures for nonlinear regression can be carried out 

methodically following key characteristics as follows:  

• Nonlinear regression allows more flexibility than linear regression because 

the function does not need to be linear or linearizable. As a result, 

nonlinear regression ensures different options to match the data. 

• Nonlinear regression may be more applicable than transformations and 

linear regression in situations when the f function can be linearized. 

• Nonlinear regression necessitates a knowledge of the f function (e.g., 

polynomial, trigonometric, exponential), which requires a comprehensive 

insight into the studied process. Although precise clarity is not necessary, 

linear regression models are suitable for process forecasts where the 

relationship between input and output parameters is approximately certain. 

Mathematical terminology used in nonlinear regression models are the most 

general so functionally generalized states cannot be written. However, the 

following are some fundamental model types used in engineering fields as 

examples of nonlinear equations: 

                                                   𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛                       (2.2)  
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                                             𝑦 = 𝑎0 + 𝑎1𝑒𝑥 + 𝑎2𝑒𝑥2 + ⋯ + 𝑎𝑛𝑒𝑥𝑛                         (2.3) 

                                    𝑦 = 𝑎0 + 𝑎1 sin𝑥 + 𝑎2 sin𝑥2 + ⋯ + 𝑎𝑛 sin𝑥𝑛                      (2.4) 

                                            𝑦 =
 𝑎0+ 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛

𝑏0+ 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛                             (2.5) 

Furthermore, a similar methodology can also be used to generate multivariable 

states with various inputs from the aforementioned model types. Another 

important point is that with a deeper understanding of mathematical functions, 

special functions (such as Bessel, Laguerre, Lambert, and Gamma) as well as 

various combinations of conventional functions can be selected. 
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Chapter 3 

3. Optimization Process 

3.1. Stochastic Optimization Methods 

3.1.1. Introduction 

One of the most common problem in applied mathematics is finding an 

approximate optimal solution for a function defined on a subset of finite-

dimensional space. Some objective functions should be optimized in 

combinatorial optimization problems, which are essential for the majority of 

machine learning approaches, in order to approximate the optimal solution. For 

these optimization problems, there were many numerical optimization techniques 

available fifty years ago; the majority of them were deterministic (traditional 

optimization techniques). Stochastic methods, which employ non-traditional 

optimization techniques, have evolved into crucial tools for engineering, statistics, 

science and business as a result of the development of computer technology. 

These techniques are the most common due to certain properties that deterministic 

algorithms do not have [27, 28]. For example, stochastic methods always include 

probability, such as how much rain falls at random distribution in a reservoir, the 

periodic prediction of the water level, or predicting the number of dropped 

connections for a communications network using a constant bandwidth that is 

randomly variable. As opposed to that, deterministic methods include probability 

under no circumstances; and outcomes based on exact input values [29].  

The process of minimizing or maximizing the value of a mathematical or 

statistical function when one or more input parameters are subject to random 

variables is known as stochastic optimization. The randomness may be noise in 

measurements, Monte Carlo randomness in the search process, or both [27, 28].  

Many industrial, biological, economic, and engineering problems can be 

confirmed as stochastic systems, such as geography, communication area, 
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banking, signal processing, aerospace. In these systems, stochastic optimization is 

appropriate for solving decision-making problems, and many researchers have 

considered stochastic optimization methods in solving these problems. For 

instance, Yan et al. [30] suggested a combined qualitative and quantitative 

modeling specification based on a hierarchical model structure framework made 

up of the high-level model, the meta-meta model, and the meta-model. According 

to the findings of this study, the complex system could be completely described 

using the suggested methodology. Li and Zhang [31] studied the problem of 

stochastic linear-quadratic optimum control under final state inequality 

constraints. In this study, the Karush-Kuhn-Tucker (KTT) theorem was proved 

using hybrid constraints, then they obtained new types of Riccati equations. The 

optimal linear state feedback control existence resulting from the KKT theorem is 

provided by this equation. To solve the uncertain restricted stochastic linear 

quadratic problem, a dynamic programming algorithm design was achieved. The 

efficient global optimization method (EGO) was used by Aydn et al. [32] to 

research the design of dimensionally stable laminated composites. The high 

stiffness and low heat and moisture expansion coefficients optimization problem 

for composite plates was resolved. The experimental proof is provided for the 

optimization algorithm suggested in this study. Using Tsai-Hill, Hoffman, Tsai-

Wu, and Hashin-Rotem criteria, failure analysis of the optimized composites was 

carried out after the design and optimization processes were finished. Zakaria et 

al. [33] thoroughly examined generic stochastic optimization steps for 

applications in renewable energy. The advantages and disadvantages of stochastic 

optimization were also emphasized. Significant optimization methods belonging 

to the stochastic optimization stages are emphasized.  

The latest improvements and important stochastic optimization techniques were 

presented by Niamsup and Rajchakit [34] in their study. For the social, economic, 

and technical aspects of renewable energy systems, it is claimed that stochastic 

optimization methods are more effective than deterministic optimization 

techniques. Using the parameter-dependent Lyapunov-Krasovskii functional in 

combination with techniques for linear matrix inequality, Niamsup and Rajchakit 

examined polytopic discrete-time stochastic functions in the interval time-varying 
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delays and proposed new standards for the robust stability of the stochastic 

system. 

In order to manage a fleet of bikes over a number of bike stations, each with a 

certain capacity and time-varying stochastic demand, Maggioni et al. [35] studied 

this problem. The optimal number of bikes to assign to each station at the 

beggining of the service is then determined using multi-stage and two-stage 

stochastic optimization models for one-track bike-sharing systems with 

transshipment. The solution supplied in the real system is compared to the 

solutions obtained using the two-stage and multi-stage models to provide 

managerial insights. In order to operate the hydrogen network of a petroleum 

refinery as efficiently as possible, Gutierrez et al. [36] studied how to cope with 

the difficulty of the indefinite scenario. The effect of raw network operating 

modifications was examined using a two-stage stochastic optimization method. 

Additionally, they were examined for viable stochastic and deterministic solutions 

to the hydrogen network problem using data from real plants. 

For the manufacturing of carbon fiber during the carbonization process, Khayyam 

et al. [37] suggested a stochastic optimization model to reduce energy 

consumption in a proper range of fundamental mechanical properties. A total of 

fifty samples of fiber were analyzed  for each set of processing operations, tensile 

strength, and modulus. The five distribution functions were examined to find the 

distribution functions that could most accurately describe the mechanical property 

distribution of filaments while the energy usage on the processing equipment was 

being tracked during the manufacturing of the samples. The Kolmogorov-Smirnov 

test was also performed to confirm the correlation statistics and distribution 

goodness of fit. The study demonstrated that, within the specified range, the 

production quality could be predicted using stochastic optimization models, and 

that this approach reduced the amount of energy used in the industrial process. 

The thick epoxy/carbon fiber laminates were used to the stochastic multi-objective 

cure optimization technique established by Tifkitsis et al. [38]. A surrogate model 

was construct using the kriging approach, which replaces the Finite Element (FE) 

simulation for computational effectiveness. A stochastic multi-objective 

optimization framework based on Genetic Algorithms was constructed by 
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coupling and integrating the surrogate model and Monte Carlo. In comparison to 

normal cure profiles, the results showed a considerable reduction of 40% in 

temperature overshoot and curing time.  

Stochastic optimization methods [27-30] include Simulated Annealing (SA), 

Differential Evolution (DE), Nelder-Mead (NM), and Random Search (RS). 

Researchers are constantly updating the literature with either new stochastic 

approaches, improvements, or both. Some commonly used stochastic optimization 

methods are briefly reviewed in the subsections that follow. 

3.1.2. Simulated Annealing 

Finding the global minimum of a function with a considerable number of 

independent variables can be done relatively effectively using the simulated 

annealing (SA) method, one of the most efficient and general stochastic 

optimization algorithms. Additionally, the SA method makes a comparison 

between the physical annealing process and determining the minimal function 

value in mixed-integer, discrete, or continuous minimization problems. The 

physical annealing procedure is referred to as a thermal process in condensed 

matter physics because it produces low energy states of a material in a heat bath. 

The fundamental idea behind the SA algorithm is to use random search in terms of 

a Markov chain, which not only accepts changes that advance the objective 

function but also retains some of the less-than-ideal changes. 

The SA algorithm generates a new point at random after each iteration, and it ends 

when any stopping conditions are satisfied (Figure 3.1). The Boltzmann 

probability distribution with a scale based on temperature is used to determine the 

distance between the new and current point or the scope of the search. Equation 

3.1 gives the definition of the Boltzmann Probability Distribution [28, 39-41] as 

                                                   𝑃(𝐸) = 𝑒−𝐸/𝑘𝑇                                                (3.1) 

where, 

 𝑃(𝐸): The Probability of Achieving the Energy Level (𝐸),                               
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𝑘: The Constant of Boltzmann,                          

𝑇: Temperature.                                  

 

  Figure 3.1: Flowchart of the simulated annealing algorithm [39] 

3.1.3. Differential Evolution 

Storn and Price first introduced Differential Evolution (DE) as a search method in 

1996 for solving optimization issues over continuous domains. Currently, DE is 

among the most powerful real-parameter optimization algorithms. The four basic 

stages of this algorithm are selection, crossover, mutation, and initialization. 

Additionally, this algorithm has three real control parameters: (i) 

differentiation/mutation constant, (ii) crossover constant, and (iii) population size. 

The manipulation of the target and difference vectors to produce a trial vector is 

essential for the differential evolution performance. The DE algorithm also uses 

three control parameters: (i) the problem dimension, which scales the difficulty of 

the optimization case; (ii) the maximum number of generations known as a 
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stopping condition; and (iii) boundary constraints [28, 41]. Figure 3.2 is a 

flowchart that summarizes the operation of the DE algorithm. 

 

Figure 3.2: Flowchart of the differential evolution algorithm [42] 

Similar operators are used by the differential evolution algorithm, a population-

based algorithm like GA. The main difference between both algorithms is that GA 

depends on crossover, a method of valuable and probabilistic information flow 

across solutions to identify better solutions. DE, however, uses mutation operation 

as its main search mechanism. This fundamental operation is based on the 

variations between population pairs of solutions that were randomly sampled. 

Despite the fact that this method is numerically inefficient, DE is strong and 

effective enough to finding an optimum global value and avoid the local minimum 

regardless of initial points. [43-45]. 

3.1.4. Nelder Mead 

The Nelder-Mead (NM) algorithm is additionally referred to as Simplex Search in 

the traditional literature on optimization. It is a traditional local search technique 

that was originally designed for unrestricted optimization problems [46]. 

Although NM is not a global optimization approach, it frequently performs 

admirably in the real world for problems with numerous local minima. Similar to 

the DE algorithm, the adjustment of the NM options is controlled by four 

fundamental parameters: reflection, expansion, contraction, and shrinkage. The 
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main characteristic of the NM algorithm is that the first few iterations produce 

satisfactory results. 

Additionally, it is required that one or two function evaluations only are notably 

rare in practice for each iteration. The Simplex can change its orientation, size, 

and shape to adapt to the local contour of the objective function, avoiding costly 

or time-consuming evaluations of multiple functions. Furthermore, NM may 

explore complicated search spaces with a great flexibility. The main steps of the 

algorithm are shown in Figure 3.3. 

 

Figure 3.3: Flowchart of the nelder–mead algorithm [47] 

 

3.1.5. Random Search 

The Monte Carlo Method, commonly known as the Random Search (RS) 

algorithm, is founded on a stochastic methodology. It differs from deterministic 

techniques like Branch-Bound and Interval Analysis due to the stochastic 
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character of the algorithm. The main advantages of RS are that (I) when a 

multimodal function's absolute maximum is required, it should to be simple to 

integrate with a true search process of some kind, (ii) it enables the global 

optimum to be approached for non-convex, non-differentiable objective functions 

with continuous and/or discontinuous domains, (iii) it is easy to apply for even the 

most difficult optimization problems, (iv) the RS technique is relatively stable and 

quickly offers fundamental information for unorganized global optimization 

problems. The process used by the examined RS method in this work is given in 

Figure 3.4. Furthermore, a thorough explanation of the Random Search approach 

is provided in [48, 49]. 

 

Figure 3.4: Flowchart of the random search algorithm [49] 
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3.2. Mathematica and Optimization 

3.2.1. Global and Local Optimization by Mathematica 

There are several commands in the Mathematica software that solve linear-

nonlinear and unconstrained-constrained problems by exact-numeric optimization. 

In this regard, while Minimize and Maximize are only acceptable for precise 

global optimization, NMinimize and NMaximize are used in numerical global 

optimization methods. The FindMinimum command is used to do numerical local 

optimization. The commands mentioned above can be used to solve constrained-

unconstrained, linear and nonlinear optimization problems [50]. Table 3.1 and 

Figure 3.5 provide comprehensive explanations of the instructions, techniques, 

and categories of problems that are used to solve them. 

For restricted nonlinear problems, there are two types of numerical global 

optimization strategies: gradient-based and direct search. While Direct Search 

methods have a probabilistic process and do not need derivative information, 

Gradient-Based methods use the objective function's first or second derivatives as 

well as constraints to calculate results. 

Linear programming (LP) problems are those in which the objective function and 

the constraints are linear functions of the optimization variables. Nonlinear 

programming (NLP) is used for solving optimization problems when some 

constraints or objective functions are nonlinear. For an objective function over 

unknown real variables, maximum, minimum, or stationary points are computed 

in the presence of congruent and noncongruent restrictions, collectively referred to 

as constraints [50]. 

If a global optimization is required, all four methods—Minimize, Maximize, 

NMinimize, and NMaximize—are applicable. Minimize and Maximize could find 

a correct global optimum for the class of optimization problems that include 

random multinomial issues. Using NMinimize or precisely with Minimize, 

questions involving global optimization can be solved computationally. 

Additionally, the method used can only be used in scenarios with a limited 

number of variables due to their asymptotic complexity. FindMinimum is the 
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appropriate tool if the problem requires a local optimum or if it can be solved by 

using just one or a few distinct points of departure. It simply tries to identify a 

local minimum. For minor problems and local optimal solutions, NMinimize 

could be useful. Only one of the four direct search methods—Nelder-Mead, 

differential evolution, simulated annealing, and random search—is used by 

NMinimize. To perfect the solving, a combination of the KKT solution, inner 

point, and penalty technique is used. If efficiency is not a factor, NMinimize must 

be more powerful than FindMinimum in addition to being a global optimal solver. 

FindMinimum, on the other hand, may be used when the efficiency is important if 

a local minimum is required, an excellent point of departure is required, the 

scenario has just one lower point (for example, convex), or the situation is big-

budget. FindMinimum and NMinimize are used to solve a similar challenge with 

seven parameters. It costs a lot of time and money to calculate restrictions [50]. 

The capabilities of the algorithms are assessed in this chapter for finding the 

global minimum for various test functions using the Mathematica commands 

FindMinimum, NMaximize, and Nminimize, RandomSearch, 

SimulatedAnnealing, NelderMead, and DifferentialEvolution. 

Table 3.1: Methods and instructions for optimization [50] 

Optimization Types Optimization Methods/Algorithms 
Mathematica 

Commands 

• Numerical Local 

Optimization 

• Linear Programming Methods 

• Nonlinear Interior Point Algorithms 

FindMinimum 

FindMaximum 

 

• Numerical Global 

Optimization 

• Linear Programming Methods 

• Differential Evolution 

• Nelder-Mead 

• Simulated Annealing 

• Random Search 

 
NMinimize 

NMaximize 

 
• Exact Global 

Optimization 

• Linear Programming Methods, 

• Cylindrical Algebraic Decomposition 

• Lagrange Multipliers 

• Integer Linear Programming 

 
Minimize 

Maximize 

• Linear 

Optimization 

• Linear Programming Methods 

(simplex, revised simplex, interior point) 

 

LinearProgramming 
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Figure 3.5: Mathematica optimization process [50] 

3.2.2. FindMinimum 

The FindMinimum command is utilized to determine the global lower limit 

function for unconstrained and constrained optimization problems [50]. 

MaxIterations, Method, PrecisionGoal, WorkingPrecision, and AccuracyGoal are 

the options for the FindMinimum command. 

The FindMinimum command chooses which method to use to solve problems, 

according to the Method option. Here, we consider unconstrained optimization 

problems: (i) Newton uses the exact Hessian or a finite difference approximation; 

(ii) The quasi-Newton BFGS approximation, which was created by previous steps, 

is used in Quasi-Newton, (iii) non-linear least-squares problems are solved using 

the LevenbergMarquardt method, also known as the damped least-squares (DLS) 

method, (iv) and linear systems are solved using the ConjugateGradient method, 

(v) the PrincipalAxis method requires two starting conditions for each variable 

and does not require derivatives. Only InteriorPoint can be chosen as a method for 

constrained optimization problems. 
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The MaxIterations parameter determines how many iterations in total should be 

used. The standard "MaxIterations->500" is used in restricted optimization 

problems. 

The options WorkingPrecision, PrecisionGoal, and AccuracyGoal determine the 

number of digits of precision. While the latter verifies the outcome, the former 

controls the internal calculations. WorkingPrecision->prec defaults to being equal 

to MachinePrecision, but if prec is greater than MachinePrecision, a constant prec 

value is used instead. The default settings are WorkingPrecision/3 and Infinity, 

respectively, when AccuracyGoal and PrecisionGoal cases are specified as 

Automatic [50]. 

The Carrom table function, a non-separable, multimodal function with numerous 

local minima, has been used as a test function, and the effectiveness of the 

FindMinimum command and its options in locating local minima is examined 

[51]. 

 

In[1]:= f[x1_,x2_]:=-(Cos[x1]Cos[x2] 
Exp[Abs[1-((x1^2+x2^2)^0.5)/Pi]])^2/30 

In[2]:= Plot3D[f[x1,x2],{x1,-10,10},{x2,-10,10}, 
AxesLabel->{x1,x2,y}] 

 
 

Figure 3.6: 3D plot of the function f(x1,x2)    
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In[3]:= FindMinimum[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2}] 
Out[3]= {-24.1568,{x1->9.64617,x2->9.64617}} 
In[4]:= FindMinimum[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 

{x1,x2},Method->“InteriorPoint”] 
Out[4]= {-0.246302, {x1 -> -1.22418*10^-14, 

x2 -> -1.29143*10^-14}} 
In[5]:= Do[Print[FindMinimum[{f[x1,x2],-10≤x1≤10, 

-10≤x2≤10},{x1,x2},Method->”InteriorPoint”, 
“MaxIterations”->i]], 
{i,{1,10,100,500,1000,2000,4000,8000}}] 

 {-0.0105322,{x1->0.969586,x2->0.969586}} 
{-0.246302,{x1->-8.74067*10^-8,x2->-8.74067*10^-8}} 
{-0.246302,{x1->-8.37899*10^-15,x2->-8.38925*10^-15}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}} 

 
  In[6]:= 

 
Table[Print[FindMinimum[{f[x1,x2],-10≤x1≤10, 
-10≤x2≤10},{{x1,RandomReal[{-10,10}]}, 
{x2,RandomReal[{-10,10}]}},Method-> 
“InteriorPoint”]],{10}] 

 {-0.0368271,{x1->0.000019185,x2->-3.44978}} 
{-1.42781,{x1->6.50458,x2->-6.50458}} 
{-6.7549,{x1->9.68366,x2->-6.45799}} 
{-0.272117,{x1->3.63079*10^-7,x2->-6.59135}} 
{-1.42781,{x1->6.50458,x2->-6.50458}} 
{-2.01069,{x1->-1.67999*10^-7,x2->9.73295}} 
{-1.42781,{x1->-6.50458,x2->-6.50458}} 
{-0.436543,{x1->6.56051,x2->3.28309}} 
{-0.0843916,{x1->-3.36299,x2->3.36298}} 
{-2.78243,{x1->-9.71802,x2->3.24199}} 

 

3.2.3.NMinimize and NMaximize Functions 

These Mathematica functions enable us to find the optimal solutions to complex 

problems in science and engineering and their unique characteristics by using 

search methods. They are efficient at finding global optimum solutions, but even 

in the absence of boundary conditions and restrictions, it may be difficult to 

achieve optimal results. Optimizing the given functions with various initial 

conditions might be the best solution to this problem. The initial test functions are 

used to get the following examples, which are the Ackley function of f (x1, x2) 

and the Holder Table 1 function of g(x3, x4), respectively. 
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In[15]:= NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}] 

Out[15]= {0.8740,{x1→-0.9984,x2→-2.9952}} 

In[4]:= NMaximize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}] 

Out[4]= {12.3202,{x1→34.5137,x2→34.51377}} 

In[7]:= NMinimize[{g[x3,x4],-10≤x3≤10,-10≤x4≤10},{x3,x4}] 

Out[7]= {-26.9203,{x3→9.6461,x4→9.6461}} 

In[8]:= NMaximize[{g[x3,x4],-10≤x3≤10,-10≤x4≤10},{x3,x4}] 

Out[8]= {-2.5326×〖10〗^(-13),{x3→-4.7498,x4→-4.7123}} 

 

Initial results suggest that the Ackley Function's global minima and maximal 

values may be attained. It is obvious it was invalid for the Holder Table 1 

function, nevertheless. It may be possible to obtain global values by changing the 

restriction region or the parameter values. 

Limitations may take the form of lists or logical combinations of options, as well 

as equality and inequity within the domain. For example, if it is important to 

define results as integers, add the z ∈ Integers to the line. This limitation makes 

integers the only possible solutions. The NMinimize command additionally needs 

a quadrilateral starting area to begin the optimum solution. Every parameter in the 

given function needs to have an upper and lower boundary. As observed in earlier 

chapters of this book utilizing the SA and RS algorithms, using the Method 

selection allows us to construct various types of search methods and obtains 

unautomated set outcomes. In this situation, it can be said that the 

LinearProgramming method is the default option in the solving process if the 

function being minimized or maximized (referred to as an objective function) and 

constraints are linear. DE is the algorithm by default if the variables are integer 

form and the central portion of the objective function are not numerical. NM 

should be utilized as the search algorithm in other situations. NelderMead 

switches with DE to acquire optimal values if it does not offer attractive solutions 

[50]. 

 3.3.4. Random Search Solver 

A stochastic technique is used in Mathematica's implementation of the Random 

Search (RS) algorithm. The algorithm creates a population during operation, 
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including random starting points, and then uses the FindMinimum local search 

method to assess the convergence behavior of the starting points to the local 

lowest limit. During this process, the options: (i) SearchPoints determines the 

number of starting points as per “min(10 f,100)” expression, where f is the 

number of variables, (ii) RandomSeed adjusts the starting value for random 

number producer, (iii) Method is defined by which method to use for minimizing 

the objective function by FindMinimum. Here, for unconstrained optimization 

problems, the FindMinimum command uses Quasi-Newton as a search method 

which does not need the second derivatives (Hessians matrix) to be computed; 

instead, the Hessian is updated by analyzing successive gradient vectors. In the 

case of the constrained optimization problem, the nonlinear interior point is 

selected as a search method by the FindMinimum command, (iv) PostProcess 

option can be selected as Karush–Kuhn–Tucker (KKT) conditions or 

FindMinimum. At the end of these processes, the best local minimum is selected 

to be the solution. 

The Random Search algorithm's options InitialPoints, Method, PenaltyFunction, 

PostProcess, and SearchPoints are automatically controlled by Mathematica, and 

appropriate values for these options are chosen in accordance with optimization 

problems [50]. The RS algorithm operates according to the prcedures shown in 

Figure 3.7. 

Separable and non-separable multimodal test functions with more than one, few, 

or many local minima are used to test the Random Search algorithm's 

effectiveness in locating the global minimum. When an algorithm is not properly 

designed, it can be inserted into the local minima without finding the global 

minimums or not all global minimums, making this type of global optimization 

problems quite difficult. In this regard, Ackley is the first chosen test function 

with a global minima at f (0, 0) = 0 [51]. The definition of the Ackley function 

and its 3D plot in an interval as seen Figure 3.7. are given in the Mathematica 

syntax in the following commands. 

In[1]:= f[x1_,x2_]:=-20Exp[(-0.02Sqrt[0.5(x1^2+x2^2)])] 
-Exp[(0.5(Cos[2Pix1]+Cos[2Pix2]))]+20+Exp[1]; 

In[2]= Plot3D[f[x1,x2],{x1,-35,35},{x2,-35,35}, 
AxesLabel->{x1,x2,y}] 
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Figure 3.7: Flowchart of the random search algorithm [51] 

  

Figure 3.8: 3D plot of Ackley function in an interval 

It should be noted that if the RandomSearch command's arguments are left 

unchanged, it might not be able to find a global minimum. 

In[3]:= NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->“RandomSearch”] 
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Out[3]= {2.83635, {x1->-5.99749,x2->8.99623}} 

 

Sometimes changing the search point option that specifies the number of points to 

start searches can be effective in finding a global minimum. 

 

In[4]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”,“SearchPoints”->i}]], 
{i,500,3000,500}] 
{0.39531,{x1->0.996345,x2->0.996345}} 
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}} 
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}} 
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}} 
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}} 
{1.2012*10^-9,{x1->-8.42728*10^- 
10,x2->-4.16243*10^-9}} 

The effect of the RandomSeed option, which establishes the random number 

generator's starting value, can be investigated in the sections that follow. In the 

previous situation, the value of "Searchpoints"->500 is insufficient to reach the 

global minimum; however, in the following example, by setting the values of the 

SearchPoints and the RandomSeed to 500 and 5, respectively, a global minimum 

can be attained. 

 

In[5]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”,“SearchPoints”-
>500, 
“RandomSeed”->i}]],{i,5}] 
{0.280127,{x1->-7.38323*10^-25,x2->0.9948}} 
{7.40815*10^-10,{x1->6.89861*10^-10, 
x2->-2.52669*10^-9}} 

 {0.280127,{x1->5.59478*10^-24,x2->0.9948}} 
{0.39531,{x1->0.996345,x2->0.996345}} 
{1.37499*10^-9,{x1->-3.64123*10^-9,  
x2->-3.22083*10^-9}} 
 

 

In this case, a matrix's points are created and used as starting points. It is simpler 

for getting at the answer if a beginning point is assigned and the problem's 

approximate solution range may be estimated. 
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In[6]:= Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”,“InitialPoints”- 
>Flatten[Table[{i,j},{i,-35,35,5},{j,-35,35,5}],1]}]] 

Out[6]= {-4.44089*10^-16,{x1->-1.52703*10^-15, x2->- 
1.52703*10^-15}} 

PostProcess option is not of primary importance for this problem. PostProcess 

methods KKT and FindMinimum give the same results. 

In[7]:= Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”, “SearchPoints”->3000, 
“PostProcess”->KKT}]] 

Out[7]= {1.2012*10^-9,{x1->-8.42726*10^-10, 
x2->-4.16243*10^-9}} 

In[8]:= Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“RandomSearch”, “SearchPoints”->3000, 
“PostProcess”->FindMinimum}]] 

Out[8]= {1.2012*10^-9,{x1->-8.42728*10^-10, 
x2->-4.16243*10^-9}} 

Another test function, Holder Table 1, which is separable and multimodal, is used 

to evaluate the capability of the RandomSearch command in finding the global 

minimum. This test function has global minima located at f (±9.646168, 

±9.6461680) = – 26.920336. The definition of the "Holder Table 1" function and 

associated 3D display are given in the Mathematica syntax shown below. 

In[9]:= f[x1_,x2_]:=-Abs[Cos[x1]Cos[x2]Exp 
[Abs[1-((x1^2+x2^2)^0.5)/Pi]]]; 

In[10]:= Plot3D[f[x1,x2],{x1,-10,10},{x2,-10,10}] 

 

Figure 3.9: “Holder Table 1” function's 3D plot. 
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Without changing any of its options for this problem, the RS algorithm finds 

one of the global minima. 

 

In[11]:= NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 
{x1,x2},Method->“RandomSearch”] 

Out[11]= {-26.9203, {x1 -> -9.64617, x2 -> -9.64617}} 
In[12]:= Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 

{x1,x2},Method->{“RandomSearch”, “RandomSeed”->i}]], 
{i,{1,6,7}}] 
{-26.9203,{x1->-9.64617,x2->9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->9.64617,x2->9.64617}} 

 

3.2.5. Simulated Annealing Solver 

The Simulated Annealing (SA) algorihm, which Mathematica has implemented, is 

a stochastic approach that bases its operation on the solids' physical annealing 

process. The SA's purpose is to determine the largest or smallest values of 

functions with numerous variables as well as the smallest values of nonlinear 

functions with numerous local minimums. Simulated annealing is the name of the 

algorithm because it represents the ideal arrangement of atoms in solid bodies and 

the minimizing of potential energy during cooling. The algorithm gives the system 

the ability to stray from the local minimum, investigate, and find a better global 

minimum [52]. 

For each iteration, the startup solution "Z" is first produced, followed by the 

generation of " Znew " close to the current point, "Z" and finally the definition of " 

Zbest". 

If f(Znew) ≤ f(Zbest), Znew replaces Zbest and Z. Otherwise, Znew replaces with Z. In 

this loop, the initial guess, as well as its number and starting value, may be found 

using the variables InitialPoints, SearchPoints, and RandomSeed. Based on the 

Boltzmann probability distribution (𝑘, ∆𝑓, 𝑓0), random movements in the search 

space are carried out via the SA algorithm. In the equation, D stands for the 

function that the Boltzmann Exponent explanation for, k for the current iteration, 

and ∆𝑓 for the variance of the objective function. In the Mathematica, if the user 

does not select manually, B is defined as  
−∆flog(k+1) 

10
 by BoltzmannExponent. 



32 

 

The working process described above is returned for all starting points once the 

algorithm either converges to a spot or stays at the same position due to the 

number of iterations specified by the LevelIterations parameter [53]. Following 

the steps shown in Figure 3.10, the SA algorithm operates. 

 

The performance capability of the SimulatedAnnealing command to determine the 

global minimum is assessed using "Ackley" and "Holder Table 1". 

 

 
In[1]:= f[x1_,x2_]:=-20 Exp[(-0.02 Sqrt[0.5 (x1^2+x2^2)])]- 

Exp[(0.5 (Cos[2 Pi x1]+Cos[2 Pi x2]))]+20+Exp[1]; 
In[2]= Plot3D[f[x1,x2],{x1,-35,35},{x2,-35,35}, 

AxesLabel->{x1,x2,y}] 

 

 

 

 

 
 

 

 

Figure 3.10: Flowchart of the simulated annealing algorithm [54] 
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By using the default value of its options, the SA algorithm might fail to locate a 

global minimum. 

 
In[3]:= NMinimize[{f[x1,x2], -35≤x1≤35,-35≤x2≤35}, 

{x1,x2},Method->{“SimulatedAnnealing”}] 
Out[3]= {2.37578, {x1 -> 7.99584, x2 -> 3.99792}} 

 

The BoltzmannExponent is an important tool that shows how to get to at a global 

minimum because it includes a function that determines a new point with each 

iteration. If this function is used without specifying a default value, the result can 

be altered. The global lower limit has not been able to be determined in the 

following problem, despite changing this option alone. 

 

In[4]:= NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}, 
Method->{“SimulatedAnnealing”, “BoltzmannExponent” 
->Function[{i,df,f0},-df/(Exp[i/10])]}] 

Out[4]= {0.830095, {x1 -> -2.99495, x2 -> 6.41153*10^-9}} 
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Although the PerturbationScale affects the result for this problem, changing this 

option by itself has not been sufficient to determine the global minimum. Local 

minimum points are attained by the algorithm. 

In[5]:= Do[Print[NMinimize[{f[x1, x2], -35 ≤ x1 ≤ 35, -35 ≤ x2 
≤ 35}, {x1, x2}, Method -> {“SimulatedAnnealing”, 
“PerturbationScale” -> i}]], {i, 15}] 

 {2.37578,{x1->7.99584,x2->3.99792}} 
{2.40345,{x1->0.999488,x2->8.99539}} 
{1.0993,{x1->-1.04986*10^-9,x2->3.99502}} 
{3.8527,{x1->-1.99944,x2->14.9958}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{4.50046,{x1->14.9966,x2->-9.99773}} 
{4.26698,{x1->11.9971,x2->-11.9971}} 
{4.27353,{x1->7.99805,x2->-14.9963}} 
{2.63697,{x1->5.99725,x2->-7.99634}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 
{6.15308,{x1->-23.9966,x2->-9.9986}} 

 

Using many more SearchPoints, a global minimum can be obtained. 

 
In[6]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 

{x1,x2},Method-> {“SimulatedAnnealing”, 
“SearchPoints”->i}]],{i,100,500,100}] 

 {0.830095,{x1->-2.99495,x2->7.32049*10^-10}} 
{0.62186,{x1->1.99543,x2->-0.997715}} 
{0.280127,{x1->-1.64485*10^-9,x2->-0.9948}} 
{0.280127,{x1->0.9948,x2->5.25186*10^-12}} 
{1.937*10^-9,{x1->-2.31279*10^-9,x2->-6.44598*10^-9}} 

 

As previously seen, while changing the search points alone is sufficient to 

determine the global lower limit., in the case of conducting a search utilizing the 

RandomSeed, PerturbationScale, and BoltzmannExponent, the algorithm seizes 

the local minimums. 

 

In[7]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35, 
-35≤x2≤35},{x1,x2},Method-> 
{“SimulatedAnnealing”,“RandomSeed”->i}]],{i,0,10}] 
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 {2.37578,{x1->7.99584,x2->3.99792}} 
{0.557056,{x1->-4.99634*10^-9,x2->1.99487}} 
{2.15456,{x1->7.99533,x2->-0.999416}} 
{0.39531,{x1->0.996345,x2->0.996345}} 
{3.46466,{x1->-8.99708,x2->9.99676}} 
{0.993567,{x1->2.99583,x2->1.99722}} 
{1.58244,{x1->-2.9975,x2->-4.99584}} 
{1.22508,{x1->-3.99557,x2->1.99779}} 
{1.46596,{x1->1.99819,x2->-4.99546}} 
{0.39531,{x1->-0.996345,x2->0.996345}} 
{2.29034,{x1->4.99729,x2->6.9962}} 

 

In[8]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method-> {“SimulatedAnnealing”, 
“PerturbationScale”->3,“SearchPoints”->500, 
“RandomSeed”->i}]], {i, 0, 10, 1}] 

 {-4.44089*10^-16,{x1->-1.62365*10^-15, 
x2->2.19073*10^-16}} 
{0.39531,{x1->-0.996345,x2->0.996345}} 
{0.557056,{x1->1.99487,x2->-1.44602*10^-11}} 
{1.16405,{x1->-2.99649,x2->-2.99649}} 
{0.557056,{x1->-1.99487,x2->-6.2523*10^-11}} 
{0.62186,{x1->-1.99543,x2->-0.997715}} 
{0.557056,{x1->1.99487,x2->7.97744*10^-12}} 
{0.39531,{x1->0.996345,x2->0.996345}} 
{0.280127,{x1->0.9948,x2->-6.58993*10^-9}} 
{2.09443*10^-9,{x1->-7.39447*10^-9, 
x2->-3.93044*10^-10}} 
{0.993567,{x1->-1.99722,x2->-2.99583}} 

 

Clear[f] 
In[9]:= f[x1_,x2_]:=-Abs[Cos[x1]Cos[x2] 
Exp[Abs[1-((x1^2+x2^2)^0.5)/Pi]]]; 
In[10]:= Plot3D[f[x1,x2],{x1,-10,10},{x2,-10,10}] 
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Without changing any of its options for this problem, the Simulated Annealing 

algorithm finds one of the global minimum points. 

 

In[11]:= NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2}, 
Method->“SimulatedAnnealing”] 

Out[11]= {-26.9203, {x1 -> 9.64617, x2 -> 9.64617}} 

 

 

The Simulated Annealing algorithm, comparing to the Random Search algorithm, 

finds four distinct global minimum points. 

 

In[12]:= Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10, 
-10≤x2≤10},{x1,x2},Method-> 
{“SimulatedAnnealing”,“RandomSeed”->i}]], 
{i,{1,2,3,11}}] 

 {-26.9203,{x1->9.64617,x2->9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->9.64617}} 
{-26.9203,{x1->9.64617,x2->-9.64617}} 

 

3.2.6. Nelder Mead Solver 

Nelder-Mead (NM) or Simplex is one of the derivative-free optimization methods 

among other traditional local search algorithms. It was first developed for 

challenges involving unconstrained optimization [55]. This method maintains a 

set of m+ 1 points that create the vertices of a polytope in m-dimensional space 

given a function of m variables. It should be highlighted that the simplex method 

for linear programming should not be confused with this. Iterations have been 

performed by forming 𝑚+ 1 points as 𝑦1, 𝑦2, 𝑦3,…, 𝑦m+1. These points form the 

functions are ordered as h(y1) ≤ h(y2) ≤ h(y3) ≤ …h(ym+1). Once the new point is 

created, it will replace the old worst point, ym+1. The centroid of a polytope serves 

as a definition 𝑐 = ∑ yi𝑚
𝑖=1 , being the average position of all the points of an 

object. Here, a trial point should be defined (yt). It is produced by reflecting the 

worst point until centroid, yt = c+𝖺(c – y m + 1 ) where 𝖺 is a variable being larger 

than 0. The new point in this section does not necessarily have to be a new worst 

or best point. Hence, h(y1) ≤ h(yt) ≤ h(ym), yt replace with ym+1. When a new point 

is obtained and is higher than the previous highest point, reflection has been 
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successfully attained. 

It can also be continued with 𝑦e = 𝑐+ (𝑦t — 𝑟), where 𝛽 is a parameter to largen 

the polytope and is greater than 1. The expansion process is complete if ℎ(𝑦e) is 

found to be less than ℎ(𝑦t). As a result, ye changes with y m + 1. Otherwise, yt 

changes to y m + 1 in the alternative. Another certain step for the algorithm 

process is that if the fresh point yt underperforms to the second-lowest point, 

ℎ(𝑦m) ≤ ℎ(𝑦m),  the polytope is thought as very large and it is required to be 

constricted [56]. 

 

Hence, a fresh test point is obtained using the following expressions [56]. 

                                     (3.2) 

where γ is a parameter with values ranging from 0 to 1. If contraction is attained, 

ℎ(𝑦c) is smaller than Min[ℎ(𝑦m+1), ℎ(𝑦t)]. On the other hand, stronger contraction 

needs more work. 

Similar to other algorithms, Nelder-Mead has specific flexible options like 

ContractRatio, ExpandRatio, InitialPoints, PenaltyFunction, PostProcess, 

RandomSeed, ReflectRatio, ShrinkRatio, and Tolerance. This algorithm works 

effectively for problems with less local minima, while not having the complete 

specifications that a reliable global optimization method should require. As with 

previous algorithms, Nelder-Mead is utilized to obtain the optimum global values 

for the Ackley and Holder Table 1 test functions [50]. 

In[5]:= NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}, 
Method->“NelderMead”] 

Out[5]= {0.87404, {x1 -> -0.998405, x2 -> -2.99522}} 

 

As can be observed, DE outperforms the first trial's results while providing better 

global optima for the Ackley function with the default set than Random Search 

and Simulated Annealing. 

RandomSeed, which is referred to as one of the critical adjustment parameters of 

NM might directly affect the performance of the NM finding global minima. 
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In[6]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“NelderMead”, 
“RandomSeed”->i}]],{i,5}] 

Out[6]= {0.557056,{x1->8.15872*10^-25,x2->-1.99487}} 
{0.280127,{x1->0.9948,x2->-6.32493*10^-9}} 
{7.12481,{x1->-20.9977,x2->-22.9975}} 
{2.32486*10^-10,{x1->4.63269*10^-10, 
x2->-6.78982*10^-10}} 
{1.3908,{x1->-4.99519,x2->-0.999038}} 

 

A better minimum value of 2.32486x10-10 was obtained by adjusting the 

RandomSeed parameters as opposed to a trial performed the default settings. 

Other possible useful adjustment factors in this algorithm are known as 

ShrinkRatio, ContractRatio, and ReflectRatio. The following, however, shows 

that it did not achieve a global minima in the Ackley function. 

 

In[7]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35}, 
{x1,x2},Method->{“NelderMead”, “ShrinkRatio”->0.95, 
“ContractRatio”->0.95,“ReflectRatio”->2, 
“RandomSeed”->i}]],{i,5}] 

Out[7]= {0.39531,{x1->-0.996345,x2->-0.996345}} 
{0.783523,{x1->-1.99642,x2->1.99642}} 
{7.37952,{x1->-5.99939,x2->-31.9967}} 
{0.39531,{x1->-0.996345,x2->0.996345}} 
{2.40704*10^-9,{x1->-2.92841*10^-9, 
x2->-7.99045*10^-9}} 

 

Using the NMinimize command, Holder Table 1—another test function—was 

minimized. The global minima with default values was, as can be seen below, -

26.9203. 

 

In[12]:= NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2},- 
Method->“NelderMead”] 

Out[12]= {-26.9203, {x1 -> 9.64617, x2 -> 9.64617}} 

 

First, RandomSeed has been adjusted to identify global minima, as it was for the 

preceding test function. 

In[13]:= Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 
{x1,x2},Method->{“NelderMead”, 
“RandomSeed”->i}]],{i,5}] 
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Out[13]= {-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-9.13635,{x1->3.24199,x2->-9.71802}} 
{-26.9203,{x1->9.64617,x2->-9.64617}} 
{-7.76664,{x1->2.08542*10^-8,x2->9.73295}} 
{-7.76664,{x1->-7.64705*10^-9,x2->-9.73295}} 

 

The results of this testing demonstrated that RandomSeed's adjustment like that 

was insufficient to achieve the minimum value. Finally, additional potentially 

helpful parameters related to the literature for NelderMead were changed to get 

global minima. 

In[14]:= Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10}, 
{x1,x2},Method->{“NelderMead”, “ShrinkRatio”->0.95, 
“ContractRatio”->0.95,“ReflectRatio”->2, 
“RandomSeed”->i}]],{i,5}] 

Out[14]= {-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 
{-26.9203,{x1->-9.64617,x2->-9.64617}} 

 

This example showed that none of the parameters could guarantee that a global 

minimum is different from the result obtained with the using default settings. 
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Chapter 4 

4. Optimization of Drying Process 

of Plastic Granules 

4.1. Methods 

4.1.1. NDSolver Solver   

The NDSolve command in the Mathematica software can be used to numerically 

solve ODEs and PDEs. Instead of having to write a function, it provides 

InterpolatingFunction, a suitable interpolation function. The Dirichlet Condition 

(a type of boundary condition for a partial differential equation that gives the 

prescribed value of the function on a surface) and Neumann Condition (a type of 

boundary condition for a partial differential equation that gives the first derivative 

on a surface) can also be used to specify boundary values. The command may 

solve some of the differential-algebraic equation types that either contain 

algebraic equations, differential equations, or both of them in one equation. For 

the NDSolve solution, the iteration procedure is appropriate. A specific prescribed 

value is taken into account in the iteration's initial step. Second, the starting point 

for the next iteration is the output of the previous one. Finally, a series of outputs 

up to the endpoint are produced by this repeated process. To define the maximum 

number of steps of the iteration process, we can use the “MaxSteps” option by 

selecting Automatic mode. Additionally, the terms StartingStepSize, 

MaxStepSize, and NormFunction are used to describe, respectively, the size of the 

step at the beginning, the maximum size of step in the independent variable of the 

equation, and the norm of error estimation. Mathematica uses 10,000 as a 

stopping criterion if the process's maximum number of iterations is not provided. 

Given that error estimations have an impact on tolerances. By satisfying the 

following requirement, they can be scaled by combining the mistakes for different 

terms. 
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                                                                                                                     (4.1) 

 

 

where the function f represents the norm function that computing norms of error 

estimate in NDSolve solver, 𝑒𝑟𝑟𝑜𝑟i is the 𝑖th component of the 𝑒𝑟𝑟𝑜𝑟 and 𝑥i is the 

𝑖th component of the current solution, n is the number of components. Tolerancea 

and tolerancer, respectively, stand for absolute and relative tolerances. An 

improved version of the explicit Runge-Kutta, which is also an adaptive 

embedded pair of orders, is used in the approach to try to get an appropriate step 

size using an embedded error estimator. 

The user has control over the NDSolve command's TimeIntegration, 

BoundaryValues, and EquationSimplification options. These options correspond 

to DE systems, ODE boundary value problems (BVPs), and simplified equations, 

depending on the type of DE. By adjusting the time integration parameters, the 

explicit Runge-Kutta method is also hybridized with the Adams, BDF, 

ExplicitRungeKutta, ImplicitRungeKutta, and Symplectic-PartitionedRungeKutta 

approaches. The method starts with a trial step at the midpoint for the domain, and 

this leads to reducing lower- order error terms [57]. 

4.1.2. FindFit Solver 

This solver is used to numerically derive the best-fit function to the prescribed 

data. The method options include "ConjugateGradient", "Gradient", 

"LevenbergMarquardt", "Newton", "NMinimize", and "QuasiNewton" and can be 

chosen based on what is given problem. The Levenberg-Marquardt method is 

chosen as an appropriate process to compute the regression coefficients in the 

given problem, which is also a sub-problem of the least-square approximation. It 

is a method for minimizing a sum-of-squares objective function. Equation 5.2, 

which relates a version of Gauss-Newton and Gradient Descent updates for the 

specified parameters, is valid for this method. 

                                          [𝐽T𝑊𝐽 + 𝜆𝐼]ℎ = 𝐽T(𝑦— ŷ)                                            (4.2) 

The Jacobian, traditional Jacobian, and diagonal weighting matrix, respectively, 
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are represented in this equation by , 𝐽T, 𝐽, 𝑊. 𝜆 stands for the damping parameter, 

which can be changed to be either large or small. ŷ stands for the fitted function, I 

stands for the identity matrix, ℎ is the perturbation, and 𝑦 is a set of measured 

points [58]. 

 

4.2. Engineering Model 

Components of a typical polymer drying system are (1) main silo, (2) process 

blower, (3) process filter, (4) process heater, (5) desiccant wheel, (6) regeneration 

heater, (7) regeneration blower and (8) regeneration filter, as shown in Figure 4.1. 

In addition to this, parameters of a typical drying system of polymers are 

temperature, drying time. These two parameters can be changed manually by the 

user. In addition, environmental factors also affect drying system (ambient 

temperature, ambient humidity, dew point of air). 

 

Figure 4.1: Illustrating of the polymer drying system  
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4.2.1. Mathematical Model 

Table 4.1: Design Variables 

Objective Function Design Variables Constraints 

Energy (kW/hr) E 

(MIN) 

Drying Temperature (°C) C 

Drying Time (Minute) t 

Moisture (M) < (%0.02)  

 

This study was prepared using the experimental data given in Table 4.2-4.3-4.4. 

Experimental data were taken with the energy analyzer integrated into the drying 

machine , as shown in Figure 4.2., the sensor measuring environmental 

temperature, pressure and moisture, as shown in Figure 4.3., the sensor mounted 

on the dryer machine shows the dryness level of the hot air entering the dryer 

machine, as shown in Figure 4.4.. and the moisture content of the sample granules 

taken from the dryer machine was measured with an instant moisture meter, as 

shown in Figure 4.5. 

 

 

 

Figure 4.2: Energy Analyzer Interface 
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Figure 4.3: Environmental Values Measurement Sensor  

 

Figure 4.4: Shini Dew Point Sensor 

 

Figure 4.5: Sartorius MA45 Moisture Analyzer  
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Sample granules were taken from the dryer machine at certain periods and their 

humidity was recorded. These trials were conducted in accordance with the table 

obtained from the DoE study, the table is given in Appendix A. According to 

literature research, the drying process of previous studies is not sufficient in terms 

of sensitivity and reliability. The drying process parameters have been modeled 

using a different approach to produce more precise results by introducing a new 

approach to the drying process. In this approach, the experimental data were used 

and modeled and optimized with neuro regression analysis. The existing data was 

divided into three groups (training, testing, validation) and many mathematical 

models (linear, logarithmic, rational, hybrid, etc.) were created. As a second step, 

the engineering limits of the candidate models were checked to produce realistic 

values. Finally, the results were evaluated using different stochastic optimization 

algorithms (Differential Evaluation, Nelder-Mead, Random Search and Simulated 

Annealing algorithms). 
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4.3. Materials and Methods 

Table 4.5: Multiple regression model names, nomenclatures and formulas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Name 
 

Nomenclature 

 

Formula 

 

 

Multiple linear 

 
 
L 

 
 

 

 

Multiple linear  rational 

 
 

LR 

        
 

 

Second order  multiple 
nonlinear 

 
 

SON 

 
 

 

 
Second order  multiple 

nonlinear rational 

 

SONR 

 
 

 

Third order  multiple 
nonlinear 

 
 

TON 

 
 

 

 

First order 

trigonometric 
multiple nonlinear 

 

 
FOTN 

 
 

 

 

First order 
trigonometric multiple 

nonlinear 
rational 

 

 
FOTNR 

 
 

 
 

 

Second order 

trigonometric multiple 
nonlinear 

 
 

SOTN 

 
 
 

 

 
Second order  

trigonometricmultiple 
nonlinear 

rational 

 

 
SOTNR 

 

 
First order 
logarithmic 

multiple nonlinear 

 
 

FOLN 

 

 
First order 

logarithmic  multiple 
nonlinear 

rational 

 

 
FOLNR 

 

 
Second order  

logarithmic multiple 
nonlinear 

 
 

SOLN 

 

 
Second order  

logarithmic multiple 
nonlinear rational 

 

 
SOLNR 
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During the modeling phase, neuro-regression analysis was used to test the 

accuracy of the predictions. In this approach, all experimental data are randomly 

divided into three. 80% of the experimental data is randomly allocated as training, 

15% as testing and 5% as validation. These separated experimental data were 

defined as input to the Wolfram Mathematica 12.0 program. The aim is to create a 

mathematical model; is to obtain the best R² values from these models. As a first 

step, R²training and R²trainingadjusted values are calculated from the mathematical 

model. These two values are expected to be greater than 95% and close to each 

other. The next step is to check the R²testing value to make sure that the 

mathematical model gives more accurate results. The R²testing value is expected to 

be greater than 85%. If the R²training and R²testing values are at the desired value, the 

R²validation value is calculated as the next step. The R²validation value must also be 

greater than 85%. If R²training, R²testing and R²validation values are not within the 

desired ranges, go back to the beginning and change the mathematical model and 

have these values calculated again in the new mathematical model. This cycle 

continues until the desired R² values are reached. Table 4.5 shows all models 

written for neuro-regression analysis of the problem.  

4.4. Optimization Problem Definition 

With the methods described, the optimum design of a drying process parameters 

was made in the following steps.  

• The parameters given in Table 4.2-4.4 were recorded as a result of the 

experiments. 

• Different functions were written mathematically with the experimental 

data, and the best of these functions was determined by looking at R²training, 

R²testing and R²validation values. 

• Four different optimization scenarios were created by selecting the 

functional structure that gave the best R² value. All of these scenarios were 

solved with four different stochastic optimization algorithms. 
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4.5. Optimization Scenarios 

Scenario 1: The objective function in this optimization problem is to minimize 

the total energy used. In Scenario 1, it is assumed that all parameters can be real 

numbers within certain ranges. Real experiment constraints are ignored. Under 

these conditions; 65<drying temperature<85, 0<drying time<300, restrictions 

were imposed and subjected to optimization algorithms. While determining the 

lower and upper limits, the lower and upper limits given by the plastic granule 

manufacturers were used as a reference and the decision was made taking into 

account the production experience. 

Scenario 2: The objective function in this optimization problem is to minimize 

the total energy used. In Scenario 2, it is assumed that all parameters can be real 

numbers within certain ranges. Real experiment constraints are ignored. Under 

these conditions; 65<drying temperature<85, 90<drying time<300, restrictions 

were imposed and subjected to optimization algorithms. 

Scenario 3: The objective function in this optimization problem is to minimize 

the total energy used. In Scenario 3, all parameters are assumed to be the same 

range as in Scenario 2, but these parameters can be only integers. Actual 

experimental constraints are ignored. Under these conditions; 65<drying 

temperature<85, 90<drying time<300 were subjected to optimization algorithms 

by imposing restrictions. 

Scenario 4: By adhering to the real experiment parameters, real constraints have 

been imposed on the optimization problem. In order to minimize the total energy 

used, all parameters are real numbers in the previous scenario ranges, drying 

temperature ∈ {65, 70, 75, 80, 85}; drying time ∈ {90, 100, 110, 120, 130, 140, 

150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300}. 
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Table 4.6: Objective Function 

             Problem No Objectives  Constraints 

Problem 1 
Minimize 

[E] 

 65 < C < 85 

 0 < t < 300 

Problem 2 
Minimize 

[E] 

 65 < C < 85 

 90 < t < 300 

Problem 3 
Minimize 

[E] 

 65 < C < 85, C ∈ integers 

 90 < t < 300, t ∈ integers 

Problem 4 
Minimize 

[E] 

 x1 == 65 || x1 == 70 || x1 == 75 || x1 == 

80 || x1 == 85||  

|| x2 == 90 || x2 == 100 || x2 == 110 || x2 

== 120 || x2 == 130 || x2 == 140 || x2 == 

150 || x2 == 160 ||  

|| x2 == 170 || x2 == 180 || x2 == 190 || 

x2 == 200 || x2 == 210 || x2 == 220 || x2 

== 230 || x2 == 240 ||  

  x2 == 250 || x2 == 260 || x2 == 270 || 

x2 == 280 || x2 == 290 || x2 == 300 

0.02≤ %M 

 

In this study, in order to reduce the energy consumption of the drying system of 

ABS polymers, four optimization problems have been defined. Our system inputs 

are the set temperature and the waiting time of the polymers in the dryer, outputs 

are the moisture content of the polymer by weight and the energy consumed by 

the machine. The set temperature C, waiting time of the polymer in the dryer t are 

considered design variables. 

4.6. Result and Discussion  

Regression analysis and artificial neural networks (ANN) are combined in a 

hybrid method to assess the accuracy of the predictions made during the modeling 

phase. This methodology uses three sets of data, each comprising 80%, 15%, and 

5% of the total data. The first set is used for training, the second is used for 

testing, and the third is used for validation. Reduction of the error between 

experimental and predicted values is the aim of the training procedure, which 

involves adjusting the regression models and coefficients given in Table 4.5 and 

hybrid models. In this study, 40 different mathematical models with two inputs 

(see Table 4.1) were tested and the results are given in Table 4.7-4.8. 

While preparing Tables 4.7-4.8, R²training, R²testing and R²validation values were 

calculated for each mathematical model. These values give information about the 
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success of the model and the values are expected to be 1 and/or close to 1. The 

closer the result is to 1, the better the model is at predicting the structure. While 

searching for the most successful model, the model that met the condition of being 

closest to 1 in all three values was selected. Because many models have R²training 

and R²testing values of 1 and/or close to 1 (see Table 4.7-4.8). The most successful 

model that simultaneously met all requirements for two outputs was selected, 

taking into account engineering boundedness. The model for energy output is the 

(TOTN+4thON) model, which is a hybrid model created by combining the third 

order trigonometric multiple nonlinear and fourth order multiple nonlinear 

models. The (TOTN+4thON) model, which is a hybrid model created by 

combining the third order trigonometric multiple nonlinear and fourth order 

multiple nonlinear models, which is the same hybrid model, was selected for 

moisture output. 

Table 4.7: Accuracy check results of obtained models for the Energy output in terms 

of R2 values  

ENERGY 

 R2
training R2

trainingAdjusted R2
testing R2

validation 

1-L 0.995752 0.995462 0.975999 0.995508 

2-LR 0.998029 0.997822 0.986149 0.999638 

3-SON 0.998828 0.998657 0.99363 0.997295 

4-SONR 0.993033 0.998805 0.995306 0.997645 

5-TON 0.999005 0.992736 0.995782 0.997129 

6-TONR 0.999467 0.999219 0.998505 0.994741 

7-4thON 0.999087 0.998659 0.99634 0.997784 

8-4thONR 0.999721 0.999468 0.999082 0.99933 

9-5thON 0.999285 0.998708 0.996426 0.993878 

10-5thONR 0.999737 0.99921 0.999258 0.999395 

11-FOTN 0.996754 0.996185 0.985155 0.997248 

12-FOTNR 0.848582 0.80532 0.479997 0.509306 
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13-SOTN 0.791458 0.727737 -1.87599 -0.335678 

14-SOTNR 0.80726 0.703838 0.02351 0.22364 

15-TOTN 0.794832 0.642855 -2.1913 -0.308922 

16-TOTNR 0.863468 0.655939 0.369712 -0.0585805 

17-FOLN 0.746591 0.729312 -0.211098 -0.0685417 

18-FOLNR 0.758402 0.73297 -0.162213 0.0701223 

19-SOLN 0.774711 0.741742 -0.937814 -0.250169 

20-SOLNR 0.781802 0.730461 0.0468881 0.00867686 

21-SOTNR+LR 0.8406 0.72859 0.173744 0.60184 

22-TOTNR+LR 0.835299 0.68557 0.285233 0.0272367 

23-SOLNR+LR 0.998958 0.998604 0.99551 0.997167 

24-SOTN+TON 0.999047 0.998341 0.994322 0.9965 

25-SOTNR+TONR 0.999502 0.998636 0.998897 0.998753 

26-SOTN+4thON 0.99913 0.998142 0.994608 0.99708 

27-SOTNR+4thONR 0.999662 0.998363 0.999158 0.99898 

28-SOTN+5thON 0.999314 0.997985 0.994269 0.995269 

29-SOTNR+5thONR 0.999888 0.992948 0.999762 0.999791 

30-TOTN+TON 0.999128 0.997723 0.993669 0.996196 

31-TOTNR+TONR 0.999777 0.997993 0.999437 0.99931 

32-TOTN+4thON 0.999245 0.99727 0.993216 0.997641 

33-TOTNR+4thONR 0.998306 1.03557 0.987386 0.999269 

34-FOLNR+LR 0.998958 0.998761 0.99555 0.997203 

35-FOLN+SON 0.998842 0.998604 0.993286 0.997337 

36-FOLNR+SONR 0.999111 0.998808 0.995835 0.997911 

37-FOLN+TON 0.999016 0.998679 0.995684 0.997119 

38-FOLNR+TONR 0.999469 0.999143 0.998545 0.998775 

39-FOLN+4thON 0.999095 0.998582 0.996288 0.997952 

40-FOLNR+4thONR 0.999699 0.999346 0.999099 0.999032 
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Table 4.8: Accuracy check results of obtained models for the Moisture output in 

terms of R2 values  

MOISTURE 

 R2
training R2

trainingAdjusted R2
testing R2

validation 

1-L 0.741412 0.723781 0.572324 0.618364 

2-LR 0.926342 0.918589 0.822627 0.913459 

3-SON 0.906796 0.893157 0.769043 0.908181 

4-SONR 0.968268 0.960801 0.867995 0.982048 

5-TON 0.943542 0.928283 0.876827 0.964149 

6-TONR 0.986797 0.980657 0.931553 0.969345 

7-4thON 0.958956 0.939716 0.851102 0.936777 

8-4thONR 0.99289 0.986426 0.961679 0.999417 

9-5thON 0.968081 0.942299 0.765717 0.974122 

10-5thONR 0.99641 0.98923 0.990973 0.99711 

11-FOTN 0.744215 0.699453 0.5949 0.590206 

12-FOTNR 0.948657 0.933987 0.900042 0.957616 

13-SOTN 0.532853 0.390114 -1.78107 -0.419047 

14-SOTNR 0.531586 0.280242 0.402331 -0.0627518 

15-TOTN 0.557595 0.229888 -2.12602 -0.271768 

16-TOTNR 0.668732 0.165205 0.427724 0.0633301 

17-FOLN 0.45176 0.41438 -0.182404 -0.209413 

18-FOLNR 0.442835 0.384186 -0.027849 -0.0927132 

19-SOLN 0.511164 0.439627 -1.10111 -0.355042 

20-SOLNR 0.705799 0.636575 0.928394 0.0727682 

21-SOTNR+LR 0.97124 0.95103 0.963919 0.981696 

22-TOTNR+LR 0.751001 0.524639 -0.062998 0.264564 

23-SOLNR+LR 0.955135 0.939862 0.917185 0.957741 

24-SOTN+TON 0.948819 0.910906 0.810242 0.964762 
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25-SOTNR+TONR 0.991354 0.976318 0.970072 0.983274 

26-SOTN+4thON 0.963453 0.921921 0.79501 0.949241 

27-SOTNR+4thONR 0.994375 0.972741 0.97261 0.999554 

28-SOTN+5thON 0.971704 0.916882 0.716449 0.979891 

29-SOTNR+5thONR 0.89408 -5.67299 0.734969 0.781832 

30-TOTN+TON 0.95304 0.877381 0.670803 0.950888 

31-TOTNR+TONR 0.997836 0.879784 0.705095 0.985742 

32-TOTN+4thON 0.966749 0.980527 0.991747 0.999221 

33-TOTNR+4thONR 0.971181 1.60521 0.904255 0.96511 

34-FOLNR+LR 0.945914 0.935709 0.860263 0.934522 

35-FOLN+SON 0.908597 0.889848 0.729506 0.90607 

36-FOLNR+SONR 0.969627 0.959288 0.882462 0.979058 

37-FOLN+TON 0.945775 0.927183 0.856345 0.962914 

38-FOLNR+TONR 0.990337 0.984391 0.953053 0.993353 

39-FOLN+4thON 0.961509 0.939697 0.82581 0.930651 

40-FOLNR+4thONR 0.993198 0.985223 0.966119 0.99948 

 

Constraints were applied to the selected model and the maximum and minimum 

values given by different algorithms were recorded. Expanded model expressions 

of energy output are given in Appendix B and expanded model expressions of 

moisture output are given in Appendix C. The table containing the engineering 

boundedness of all models is given in Appendix D. 
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Table 4.9: Optimization Problem Results 

Scenario No Constraints 
Optimization 

Algorithm 

Total Energy 

(kWh) 
Suggested Design 

1 
65 < C < 85 

0 < t < 300 

MDE 15.98 x1=67.60, x2=57.24 

MRS 15.98 x1=67.60, x2=57.24 

MNM 13.22 x1=73.80, x2=33.44 

MSA 34.38 x1=65.22, x2=243.41 

2 
65 < C < 85 

90 < t < 300 

MDE 11.69 x1=68.13, x2=90.24 

MRS 11.57 x1=65.74, x2=92.56 

MNM 11.69 x1=68.13, x2=90.24 

MSA 11.57 x1=65.74, x2=92.56 

3 

65 < C < 85,  

C ∈ integers 

90 < t < 300,  

t ∈ integers 

MDE 12.59 x1=69, x2=93 

MRS 13.07 x1=66, x2=91 

MNM 13.07 x1=66, x2=91 

MSA 12.29 x1=66, x2=93 

4 

x1 == 65 || x1 == 70 || x1 == 75 || 

x1 == 80 || x1 == 85||  

|| x2 == 90 || x2 == 100 || x2 == 

110 || x2 == 120 || x2 == 130 || 

x2 == 140 || x2 == 150 || x2 == 

160 ||  

|| x2 == 170 || x2 == 180 || x2 == 

190 || x2 == 200 || x2 == 210 || 

x2 == 220 || x2 == 230 || x2 == 

240 ||  

  x2 == 250 || x2 == 260 || x2 == 

270 || x2 == 280 || x2 == 290 || 

x2 == 300 

0.02≤ %M 

MDE 15.61 x1=75, x2=100 

MRS 15.61 x1=75, x2=100 

MNM 15.61 x1=75, x2=100 

MSA 15.61 x1=75, x2=100 

 

In the tables, x1 represents the drying temperature and x2 represents the drying 

time. 

When we examine the results of different scenarios created to bring the structure 

closer to reality; For two input values in Scenario 1, the first input value was 

defined within the machine value range, and the second input value was defined 

between the maximum and minimum ranges. As a result: the minimum total 

energy used was found to be 15.98 kWh. Recommended values are drying 

temperature (C°)=67.60, drying time (t)=57.24 minutes. The recommended values 

appear close to reality, but are not within practical limits. 
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In Scenario 2, realistic restrictions were imposed on the second input in order to 

obtain more convergent values. The first input value was defined within the 

machine value range, and the second input value was defined with reference to the 

values given by the manufacturers. As a result: the minimum total energy used 

was found to be 11.69 kWh. Recommended values are drying temperature 

(C°)=68.13, drying time (t)=90.24 minutes. Recommended values appear close to 

reality, but are not within practical limits. 

In Scenario 3, the experiment was conducted by imposing all restrictions 

appropriate to the experimental data. Values are restricted to be integers. As a 

result: the minimum total energy used was found to be 12.59 kWh. Recommended 

values are drying temperature (C°)=69, drying time (t)=93 minutes. The 

recommended values seem close to reality, but it does not seem possible to apply 

them to the machine as integers. 

In Scenario 4, more successful results were obtained by imposing all restrictions 

appropriate to the experimental data. Values are restricted to be integers. As a 

result: the minimum total energy used was found to be 15.61 kWh. Recommended 

values are drying temperature (C°)=75, drying time (t)=100 minutes. The 

recommended values seem close to reality, but it does not seem possible to apply 

them to the machine as integers. 

The experimental data suggested in Table 4.9 have been tested experimentally. 

First of all, the technical revision made for this study enabled the machine to enter 

input as integers. Therefore, Scenario 3 values were used and the limitation of 

entering numbers 5 and multiples in Scenario 4 was eliminated. With the 

suggested model results, drying at 66 (°C) for 91 minutes, energy consumption; It 

was recorded as 13.9 kWh. 
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4.7. Conclusion 

This research was conducted to investigate the effect of drying process variables 

of plastic granules. Tables 4.2-4.3-4.4 were measured and recorded as 

experimental data. Experimental data consisting of two inputs and two outputs 

were modeled mathematically and the success of the model was evaluated. Then, 

the results of four stochastic optimization methods (Differential Evaluation, 

Nelder-Mead, Random Seed, Simulated Annealing) of the selected successful 

model were evaluated. It has been observed that the more experimental data taken 

as reference or performed, the more successful the mathematical models are. Real 

experiments were conducted with the results obtained. When drying standards for 

0.02% moisture are used, energy consumption while drying for 240 minutes at 75 

(°C) temperature; While it was 36.1 kWh, the energy consumption was dried at 66 

(°C) for 91 minutes with the suggested model results; It was recorded as 13.9 

kWh. Thus, 60% energy savings were achieved in the granule drying process in a 

400kg silo. 
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Appendices 

Appendix A  

Draft Design Chart 

1 Level 1 of A Level 1 of B 

2 Level 1 of A Level 2 of B 

3 Level 1 of A Level 3 of B 

4 Level 1 of A Level 4 of B 

5 Level 1 of A Level 5 of B 

6 Level 1 of A Level 6 of B 

7 Level 1 of A Level 7 of B 

8 Level 1 of A Level 8 of B 

9 Level 1 of A Level 9 of B 

10 Level 1 of A Level 10 of B 

11 Level 1 of A Level 11 of B 

12 Level 1 of A Level 12 of B 

13 Level 1 of A Level 13 of B 

14 Level 1 of A Level 14 of B 

15 Level 1 of A Level 15 of B 

16 Level 1 of A Level 16 of B 

17 Level 1 of A Level 17 of B 

18 Level 1 of A Level 18 of B 

19 Level 1 of A Level 19 of B 

20 Level 1 of A Level 20 of B 

21 Level 1 of A Level 21 of B 

22 Level 2 of A Level 1 of B 

23 Level 2 of A Level 2 of B 

24 Level 2 of A Level 3 of B 

25 Level 2 of A Level 4 of B 

26 Level 2 of A Level 5 of B 

27 Level 2 of A Level 6 of B 

28 Level 2 of A Level 7 of B 

29 Level 2 of A Level 8 of B 
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30 Level 2 of A Level 9 of B 

31 Level 2 of A Level 10 of B 

32 Level 2 of A Level 11 of B 

33 Level 2 of A Level 12 of B 

34 Level 2 of A Level 13 of B 

35 Level 2 of A Level 14 of B 

36 Level 2 of A Level 15 of B 

37 Level 2 of A Level 16 of B 

38 Level 2 of A Level 17 of B 

39 Level 2 of A Level 18 of B 

40 Level 2 of A Level 19 of B 

41 Level 2 of A Level 20 of B 

42 Level 2 of A Level 21 of B 

43 Level 3 of A Level 1 of B 

44 Level 3 of A Level 2 of B 

45 Level 3 of A Level 3 of B 

46 Level 3 of A Level 4 of B 

47 Level 3 of A Level 5 of B 

48 Level 3 of A Level 6 of B 

49 Level 3 of A Level 7 of B 

50 Level 3 of A Level 8 of B 

51 Level 3 of A Level 9 of B 

52 Level 3 of A Level 10 of B 

53 Level 3 of A Level 11 of B 

54 Level 3 of A Level 12 of B 

55 Level 3 of A Level 13 of B 

56 Level 3 of A Level 14 of B 

57 Level 3 of A Level 15 of B 

58 Level 3 of A Level 16 of B 

59 Level 3 of A Level 17 of B 

60 Level 3 of A Level 18 of B 

61 Level 3 of A Level 19 of B 

62 Level 3 of A Level 20 of B 

63 Level 3 of A Level 21 of B 
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Appendix B  

Expanded Model Expressions of the  

Case Studies – Energy Output 

Models Name Models 

1-L -21.9331 + 0.289894 x1 + 0.161759 x2 

2-LR (-7777.01 + 56.9468 x1 + 6842.24 x2)/(78600.4 - 483.771 x1 + 2.69181 x2) 

3-SON 
111.467 - 3.0248 x1 + 0.0202703 x1^2 + 0.0328197 x2 + 0.00172591 x1 x2 - 7.3386*10^-6 

x2^2 

4-SONR 
(-30774.6 + 554.359 x1 - 2.31006 x1^2 + 6276.09 x2 - 74.44 x1 x2 + 4.6039 x2^2)/(26293.6 - 

114.857 x1 - 2.34895 x1^2 + 62.8224 x2 - 0.427037 x1 x2 - 0.0021201 x2^2) 

5-TON 

16.5977 - 0.260945 x1 - 0.00288916 x1^2 + 0.0000438868 x1^3 + 0.579852 x2 - 0.0121952 

x1 x2 + 0.0000887332 x1^2 x2 - 0.00020572 x2^2 + 1.87585*10^-6 x1 x2^2 + 1.09167*10^-7 

x2^3 

6-TONR 

(-2.58648*10^6 + 152756. x1 - 2696.3 x1^2 + 14.7827 x1^3 - 652407. x2 + 18153.1 x1 x2 - 

122.941 x1^2 x2 - 286.732 x2^2 + 2.75221 x1 x2^2 + 0.37027 x2^3)/(-2.0604*10^6 + 36244.8 

x1 + 218.544 x1^2 - 4.2118 x1^3 - 5107.08 x2 + 96.1947 x1 x2 - 0.468245 x1^2 x2 + 5.19197 

x2^2 - 0.0339752 x1 x2^2 - 0.000671711 x2^3) 

7-4thON 

11.3675 - 0.0893683 x1 - 0.00199103 x1^2 - 0.0000100943 x1^3 + 3.20919*10^-7 x1^4 + 

0.219245 x2 - 0.00217333 x1 x2 - 0.0000231139 x1^2 x2 + 5.5775*10^-7 x1^3 x2 + 

0.00126262 x2^2 - 0.0000131368 x1 x2^2 - 5.5352*10^-8 x1^2 x2^2 - 3.92284*10^-6 x2^3 + 

5.1732*10^-8 x1 x2^3 + 2.7604*10^-10 x2^4 

8-4thONR 

(-7.22376*10^8 + 2.21787*10^7 x1 - 52558.6 x1^2 - 3477.37 x1^3 +   25.9284 x1^4 + 

2.58637*10^7 x2 + 215319. x1 x2 - 15614.8 x1^2 x2 +   110.469 x1^3 x2 - 815129. x2^2 + 

18476.9 x1 x2^2 -   102.245 x1^2 x2^2 + 917.256 x2^3 - 13.1132 x1 x2^3 +   0.469367 

x2^4)/(2.63726*10^8 - 654528. x1 - 89751.8 x1^2 + 622.839 x1^3 + 0.998409 x1^4 - 

4.98456*10^6 x2 + 85568.6 x1 x2 + 69.197 x1^2 x2 - 4.29018 x1^3 x2 + 10255.9 x2^2 - 

207.796 x1 x2^2 + 0.772572 x1^2 x2^2 + 6.19006 x2^3 - 0.00475207 x1 x2^3 - 0.00461814 

x2^4) 

9-5thON 

2.13396 - 0.00111265 x1 - 0.00020523 x1^2 - 2.80514*10^-6 x1^3 - 1.45122*10^-8 x1^4 + 

2.86932*10^-10 x1^5 + 0.388169 x2 - 0.00394147 x1 x2 - 0.0000759043 x1^2 x2 - 

2.26404*10^-7 x1^3 x2 + 1.67822*10^-8 x1^4 x2 - 0.00060666 x2^2 + 0.000074933 x1 x2^2 

+ 5.12302*10^-7 x1^2 x2^2 - 1.5954*10^-8 x1^3 x2^2 - 0.0000133636 x2^3 - 4.74287*10^-7 

x1 x2^3 + 6.99304*10^-9 x1^2 x2^3 + 1.00205*10^-7 x2^4 - 8.76734*10^-10 x1 x2^4 - 

4.54219*10^-11 x2^5 
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10-5thONR 

(-5.91724*10^11 + 1.5924*10^10 x1 - 5.31164*10^7 x1^2 - 586354. x1^3 - 12750.8 x1^4 + 

145.54 x1^5 - 1.31842*10^9 x2 - 6.0386*10^6 x1 x2 + 1.25652*10^6 x1^2 x2 - 14884. x1^3 

x2 + 52.8742 x1^4 x2 + 7.7203*10^7 x2^2 - 2.50593*10^6 x1 x2^2 + 18641.3 x1^2 x2^2 - 

45.9843 x1^3 x2^2 - 272708. x2^3 + 12698.6 x1 x2^3 - 56.8033 x1^2 x2^3 - 1223.88 x2^4 - 

13.2575 x1 x2^4 + 5.03118 x2^5)/(-2.76554*10^10 + 6.70612*10^8 x1 + 1.47781*10^6 x1^2 

- 99462.1 x1^3 + 313.035 x1^4 + 2.0602 x1^5 + 1.15013*10^8 x2 - 5.76438*10^6 x1 x2 + 

28856.1 x1^2 x2 + 59.0248 x1^3 x2 - 0.629819 x1^4 x2 + 1.1102*10^6 x2^2 + 42559.7 x1 

x2^2 - 573.755 x1^2 x2^2 + 2.79843 x1^3 x2^2 - 27083.2 x2^3 + 271.068 x1 x2^3 - 1.40554 

x1^2 x2^3 + 61.3238 x2^4 - 0.33473 x1 x2^4 - 0.00752563 x2^5) 

11-FOTN 
-0.438492 + 0.000597981 x1 + 0.161427 x2 - 3.00312 Cos[x1] + 0.158221 Cos[x2] - 4.43859 

Sin[x1] - 0.0143774 Sin[x2] 

12-FOTNR 

(40661.6 + 440.814 x1 - 95.2483 x2 + 24601.6 Cos[x1] + 

2182.82 Cos[x2] + 32841.9 Sin[x1] - 44598.4 Sin[x2])/(-6563.82 + 143.09 x1 - 10.2172 x2 + 

1969.13 Cos[x1] - 17.4551 Cos[x2] + 3584.69 Sin[x1] - 1631.43 Sin[x2]) 

13-SOTN 

6.57696 - 4.3608 Cos[x1] + 9.158 Cos[x1]^2 - 5.46193 Cos[x2] - 2.9776 Cos[x1] Cos[x2] + 

1.66898 Cos[x2]^2 - 1.56304 Sin[x1] + 6.79116 Sin[x1]^2 - 5.10525 Sin[x2] + 0.387997 

Sin[x1] Sin[x2] + 16.4044 Sin[x2]^2 

14-SOTNR 

(16.0914 - 2.83823 Cos[x1] + 13.4868 Cos[x1]^2 + 23.4494 Cos[x2] - 0.687061 Cos[x1] 

Cos[x2] - 14.2928 Cos[x2]^2 - 10.9968 Sin[x1] + 32.2789 Sin[x1]^2 - 5.07733 Sin[x2] + 

0.00121628 Sin[x1] Sin[x2] - 12.531 Sin[x2]^2)/(0.920622 + 0.250771 Cos[x1] + 0.834167 

Cos[x1]^2 + 1.11558 Cos[x2] + 0.00353371 Cos[x1] Cos[x2] - 0.2923 Cos[x2]^2 + 1.11193 

Sin[x1] - 0.99932 Sin[x1]^2 - 0.175298 Sin[x2] + 0.00531203 Sin[x1] Sin[x2] - 0.415149 

Sin[x2]^2) 

15-TOTN 

6.52008 - 3.17251 Cos[x1] + 9.01618 Cos[x1]^2 - 3.859 Cos[x1]^3 - 1.8912 Cos[x2] - 

2.75515 Cos[x1] Cos[x2] - 1.92103 Cos[x1]^2 Cos[x2] + 1.83429 Cos[x2]^2 + 3.81503 

Cos[x1] Cos[x2]^2 - 2.67568 Cos[x2]^3 - 1.96928 Sin[x1] + 6.97295 Sin[x1]^2 + 4.25055 

Sin[x1]^3 - 10.7246 Sin[x2] - 10.9571 Sin[x1] Sin[x2] + 22.8285 Sin[x1]^2 Sin[x2] + 16.0737 

Sin[x2]^2 - 2.44628 Sin[x1] Sin[x2]^2 - 0.166613 Sin[x2]^3 

16-TOTNR 

(338.723 - 1444.81 Cos[x1] - 1448.63 Cos[x1]^2 + 1190.03 Cos[x1]^3 + 1898.91 Cos[x2] + 

846.619 Cos[x1] Cos[x2] - 2770.44 Cos[x1]^2 Cos[x2] - 139.594 Cos[x2]^2 + 1442.71 

Cos[x1] Cos[x2]^2 - 612.979 Cos[x2]^3 - 121.534 Sin[x1] + 185.93 Sin[x1]^2 + 901.832 

Sin[x1]^3 - 267.356 Sin[x2] - 910.611 Sin[x1] Sin[x2] + 1673.28 Sin[x1]^2 Sin[x2] + 305.897 

Sin[x2]^2 - 1843.9 Sin[x1] Sin[x2]^2 - 267.951 Sin[x2]^3)/(60.096 + 310.438 Cos[x1] - 

1.70268 Cos[x1]^2 - 327.646 Cos[x1]^3 + 78.8011 Cos[x2] + 33.0701 Cos[x1] Cos[x2] - 

113.031 Cos[x1]^2 Cos[x2] - 74.0187 Cos[x2]^2 + 57.2544 Cos[x1] Cos[x2]^2 - 27.8132 

Cos[x2]^3 + 158.356 Sin[x1] - 21.6359 Sin[x1]^2 + 88.5441 Sin[x1]^3 - 7.78449 Sin[x2] - 

32.9114 Sin[x1] Sin[x2] + 57.0037 Sin[x1]^2 Sin[x2] -56.4131 Sin[x2]^2 - 73.0478 Sin[x1] 

Sin[x2]^2 - 10.2198 Sin[x2]^3) 

17-FOLN -43.1379 - 4.09369 Log[x2] + 15.6471 Log[x1] 

18-FOLNR 
(108.198 - 5.37001 Log[x2] - 23.1458 Log[x1])/(5.46204 -0.201769 Log[x2] - 1.18436 

Log[x1]) 

19-SOLN 
5265.91 - 6.60562 Log[x2] - 12.654 Log[x2]^2 - 2449.29 Log[x1] + 0.562544 Log[x2] 

Log[x1] + 286.268 Log[x1]^2 

20-SOLNR 
(247.468 + 1527.14 Log[x2] - 104.439 Log[x2]^2 + 279. Log[x1] - 42.207 Log[x2] Log[x1] - 

70.3956 Log[x1]^2)/(8.66624 + 79.7473 Log[x2] - 4.03242 Log[x2]^2 + 15.5922 Log[x1] - 
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17.8812 Log[x2] Log[x1] - 3.76287 Log[x1]^2) 

21-SOTNR+LR 

(7333.5 + 88.5054 x1 - 896.674 x2 + 396.149 Cos[x1] + 26872.8 Cos[x1]^2 - 19582.8 Cos[x2] 

- 114553. Cos[x1] Cos[x2] + 70463.8 Cos[x2]^2 - 83611.6 Sin[x1] - 84207.6 Sin[x1]^2 + 

32809.9 Sin[x2] + 132889. Sin[x1] Sin[x2] - 36533.2 Sin[x2]^2)/(7246.5 + 25.8093 x1 - 

27.021 x2 + 780.14 Cos[x1] + 68.7036 Cos[x1]^2 - 758.895 Cos[x2] - 4386.74 Cos[x1] 

Cos[x2] - 4887.92 Cos[x2]^2 + 608.675 Sin[x1] - 11920.4 Sin[x1]^2 + 1706.9 Sin[x2] + 

5374.45 Sin[x1] Sin[x2] - 7869.99 Sin[x2]^2) 

22-TOTNR+LR 

(2133. + 320.635 x1 - 205.903 x2 - 12084.8 Cos[x1] - 5576.91 Cos[x1]^3 + 9750.25 Cos[x2] - 

20141.4 Cos[x1]^2 Cos[x2] - 11069.1 Cos[x1] Cos[x2]^2 + 7243.55 Cos[x2]^3 - 1405.03 

Sin[x1] + 15394.1 Sin[x1]^3 - 6714.19 Sin[x2] - 38801. Sin[x1]^2 Sin[x2] + 42111.3 Sin[x1] 

Sin[x2]^2 + 41073.5 Sin[x2]^3)/(1488.49 + 4.66931 x1 - 9.49081 x2 - 256.72 Cos[x1] - 

385.345 Cos[x1]^3 + 176.28 Cos[x2] - 764.453 Cos[x1]^2 Cos[x2] - 569.073 Cos[x1] 

Cos[x2]^2 + 514.395 Cos[x2]^3 + 2758.58 Sin[x1] - 4566.93 Sin[x1]^3 - 291.338 Sin[x2] - 

1419.3 Sin[x1]^2 Sin[x2] + 1974.05 Sin[x1] Sin[x2]^2 + 1672.5 Sin[x2]^3) 

23-SOLNR+LR 

(2036.91 + 14.8309 x1 + 1.80667 x2 + 17.1551 Log[x2] -0.704283 Log[x2]^2 - 368.864 

Log[x1] - 3.49455 Log[x2] Log[x1] - 83.8714 Log[x1]^2)/(-145.263 - 0.875921 x1 + 

0.000754009 x2 + 0.841054 Log[x2] - 0.0270605 Log[x2]^2 + 46.1167 Log[x1] - 0.182322 

Log[x2] Log[x1] + 1.25115 Log[x1]^2) 

24-SOTN+TON 

-0.140345 - 0.00104205 x1 - 2.8312*10^-6 x1^2 + 9.38326*10^-8 x1^3 + 0.595734 x2 - 

0.0123896 x1 x2 + 0.0000895374 x1^2 x2 - 0.000251451 x2^2 + 2.0293*10^-6 x1 x2^2 + 

1.7505*10^-7 x2^3 - 0.598247 Cos[x1] + 0.00524295 Cos[x1]^2 + 0.175067 Cos[x2] + 

0.00719196 Cos[x1] Cos[x2] + 0.0533476 Cos[x2]^2 - 0.307537 Sin[x1] - 0.915619 Sin[x1]^2 

+ 0.0847963 Sin[x2] + 0.127651 Sin[x1] Sin[x2] - 0.44356 Sin[x2]^2 

25-SOTNR+TONR 

(1.7473*10^7 - 21085.8 x1 - 4799.49 x1^2 - 42.8254 x1^3 - 535167. x2 + 16530.7 x1 x2 - 

121.218 x1^2 x2 - 1304.63 x2^2 + 14.7893 x1 x2^2 + 1.13081 x2^3 + 1.41614*10^6 Cos[x1] 

+ 1.07223*10^7 Cos[x1]^2 + 14025.5 Cos[x2] + 30404.4 Cos[x1] Cos[x2] + 4.50259*10^7 

Cos[x2]^2 + 3.40713*10^7 Sin[x1] - 8.74425*10^7 Sin[x1]^2 + 94.89 Sin[x2] - 17215.4 

Sin[x1] Sin[x2] + 4.51065*10^7 Sin[x2]^2)/(1.33924*10^6 - 3195.38 x1 + 2.9064 x1^2 - 

2.88511 x1^3 - 22010.3 x2 + 425.835 x1 x2 - 2.05851 x1^2 x2 + 18.0079 x2^2 - 0.107341 x1 

x2^2 - 0.0051834 x2^3 - 1.06069*10^6 Cos[x1] - 634958. Cos[x1]^2 + 891.224 Cos[x2] + 

1730.96 Cos[x1] Cos[x2] - 667141. Cos[x2]^2 - 4.23654*10^6 Sin[x1] + 5.34844*10^6 

Sin[x1]^2 + 446.237 Sin[x2] - 1036.18 Sin[x1] Sin[x2] - 663615. Sin[x2]^2) 

26-SOTN+4thON 

-0.0955151 - 0.00105929 x1 - 0.0000106698 x1^2 - 9.44749*10^-8 x1^3 - 6.67653*10^-10 

x1^4 + 0.19581 x2 - 0.00177917 x1 x2 - 0.0000187827 x1^2 x2 + 4.92891*10^-7 x1^3 x2 + 

0.00147901 x2^2 - 0.0000182999 x1 x2^2 - 2.0918*10^-8 x1^2 x2^2 - 4.20667*10^-6 x2^3 + 

5.20916*10^-8 x1 x2^3 + 8.23978*10^-10 x2^4 - 0.328351 Cos[x1] - 0.102768 Cos[x1]^2 + 

0.161134 Cos[x2] + 0.0291301 Cos[x1] Cos[x2] + 0.13898 Cos[x2]^2 + 0.133171 Sin[x1] - 

0.214735 Sin[x1]^2 + 0.115924 Sin[x2] + 0.100275 Sin[x1] Sin[x2] - 0.409795 Sin[x2]^2 

27-SOTNR+4thONR 

(4.64714*10^6 + 7021.07 x1 - 814.721 x1^2 - 25.8387 x1^3 + 0.395083 x1^4 + 2.546*10^7 

x2 - 31349.3 x1 x2 - 1883.87 x1^2 x2 - 17.6464 x1^3 x2 - 61560.8 x2^2 - 7308.88 x1 x2^2 + 

98.8004 x1^2 x2^2 + 1215.55 x2^3 - 19.4795 x1 x2^3 + 2.77512 x2^4 - 2.6528*10^7 Cos[x1] 

- 2.8575*10^7 Cos[x1]^2 - 1.44771*10^6 Cos[x2] + 2.0372*10^6 Cos[x1] Cos[x2] - 

2.57996*10^7 Cos[x2]^2 - 1.21337*10^8 Sin[x1] + 1.49174*10^8 Sin[x1]^2 - 722243. 

Sin[x2] - 8.71854*10^6 Sin[x1] Sin[x2] - 2.43819*10^7 Sin[x2]^2)/(-5.60292*10^6 - 48587.1 

x1 - 435.359 x1^2 - 4.2769 x1^3 + 0.874916 x1^4 + 331718. x2 - 29980.2 x1 x2 - 66.3603 

x1^2 x2 + 4.81939 x1^3 x2 - 14389.7 x2^2 + 350.151 x1 x2^2 - 2.65734 x1^2 x2^2 + 49.42 

x2^3 - 0.310336 x1 x2^3 - 0.0139878 x2^4 + 2.65183*10^7 Cos[x1] - 1.68261*10^6 

Cos[x1]^2 - 98976.2 Cos[x2] + 160267. Cos[x1] Cos[x2] - 18569*10^7 Cos[x2]^2 + 

2.24858*10^7 Sin[x1] + 1.00928*10^8 Sin[x1]^2 - 33578.1 Sin[x2] - 517955. Sin[x1] Sin[x2] 

- 1.20816*10^7 Sin[x2]^2) 

28-SOTN+5thON 
-0.0099731 - 0.000541734 x1 - 0.0000120441 x1^2 - 2.10715*10^-7 x1^3 - 3.26139*10^-9 

x1^4 - 4.67847*10^-11 x1^5 + 0.346837 x2 - 0.0033633 x1 x2 - 0.000065053 x1^2 x2 - 
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1.73432*10^-7 x1^3 x2 + 1.51227*10^-8 x1^4 x2 + 3.29946*10^-6 x2^2 + 0.0000571986 x1 

x2^2 + 3.27266*10^-7 x1^2 x2^2 - 1.3571*10^-8 x1^3 x2^2 - 0.0000137083 x^3 - 

3.12572*10^-7 x1 x2^3 + 6.10734*10^-9 x1^2 x2^3 + 7.80261*10^-8 x2^4 - 9.27297*10^-10 

x1 x2^4 - 1.01067*10^-11 x2^5 + 0.195688 Cos[x1] - 0.122197 Cos[x1]^2 + 0.173385 

Cos[x2] - 0.0403611 Cos[x1] Cos[x2] + 0.196717 Cos[x2]^2 + 0.28996 Sin[x1] + 0.405695 

Sin[x1]^2 + 0.0889131 Sin[x2] + 0.198345 Sin[x1] Sin[x2] - 0.234305 Sin[x2]^2 

29-SOTNR+5thONR 

(-7.57215*10^8 - 1.29622*10^7 x1 - 177278. x1^2 - 1947.02 x1^3 -   12.3385 x1^4 + 1.0507 

x1^5 + 5.8846*10^9 x2 - 3.42052*10^7 x1 x2 -   688108. x1^2 x2 + 1113.54 x1^3 x2 + 

29.7283 x1^4 x2 -    5.24229*10^7 x2^2 - 178146. x1 x2^2 + 2078.65 x1^2 x2^2 +   76.3378 

x1^3 x2^2 + 308182. x2^3 + 282.27 x1 x2^3 - 31.4937 x1^2 x2^3 + 348.044 x2^4 - 10.1731 

x1 x2^4 +   0.559587 x2^5 - 3.28754*10^9 Cos[x1] - 1.71218*10^9 Cos[x1]^2 +   

3.29741*10^8 Cos[x2] + 2.71996*10^8 Cos[x1] Cos[x2] -   3.46921*10^9 Cos[x2]^2 - 

1.20318*10^10 Sin[x1] +   1.87884*10^10 Sin[x1]^2 - 1.88787*10^7 Sin[x2] +   

5.34581*10^8 Sin[x1] Sin[x2] - 2.01578*10^9 Sin[x2]^2)/(-6.92656*10^8 - 7.78012*10^6 x1 

- 81676. x1^2 - 513.936 x1^3 + 7.04989 x1^4 + 1.41369 x1^5 - 4.28251*10^8 x2 - 681239. x1 

x2 + 21643.9 x1^2 x2 + 313.269 x1^3 x2 + 0.220191 x1^4 x2 + 1.92947*10^6 x2^2 + 10162.1 

x1 x2^2 + 94.8713 x1^2 x2^2 - 2.48495 x1^3 x2^2 + 7318.25 x2^3 - 371.329 x1 x2^3 + 

1.71496 x1^2 x2^3 + 24.4251 x2^4 + 0.0697913 x1 x2^4 - 0.0310641 x2^5 + 1.37124*10^9 

Cos[x1] + 1.81178*10^8 Cos[x1]^2 + 1.51708*10^7 Cos[x2] + 1.19367*10^7 Cos[x1] 

Cos[x2] - 9.95582*10^8 Cos[x2]^2 - 3.63799*10^9 Sin[x1] + 2.41953*10^10 Sin[x1]^2 - 

596607. Sin[x2] + 1.29803*10^7 Sin[x1] Sin[x2] - 9.96127*10^8 Sin[x2]^2) 

30-TOTN+TON 

-0.0717383 - 0.000568824 x1 - 2.38021*10^-6 x1^2 + 3.05374*10^-8 x1^3 + 0.655957 x2 - 

0.0141489 x1 x2 + 0.000101293 x1^2 x2 - 0.000220343 x2^2 + 1.86519*10^-6 x1 x2^2 + 

1.63652*10^-7 x2^3 - 0.273484 Cos[x1] - 0.00476383 Cos[x1]^2 - 0.387281 Cos[x1]^3 - 

0.088718 Cos[x2] - 0.0823063 Cos[x1] Cos[x2] + 0.461116 Cos[x1]^2 Cos[x2] + 0.110016 

Cos[x2]^2 + 0.0709806 Cos[x1] Cos[x2]^2 - 0.281944 Cos[x2]^3 - 0.148308 Sin[x1] - 

0.439435 Sin[x1]^2 - 0.373843 Sin[x1]^3 - 1.1065 Sin[x2] + 0.0616452 Sin[x1] Sin[x2] + 

0.20165 Sin[x1]^2 Sin[x2] - 0.313705 Sin[x2]^2 - 0.420237 Sin[x1] Sin[x2]^2 + 1.52303 

Sin[x2]^3 

31-TOTNR+TONR 

(3.4018*10^8 + 3.26127*10^6 x1 + 18641.3 x1^2 + 176.819 x1^3 + 340092. x2 - 9329.26 x1 

x2 + 62.8696 x1^2 x2 - 301.825 x2^2 + 3.57896 x1 x2^2 + 0.422679 x2^3 + 3.02228*10^8 

Cos[x1] - 2.74168*10^8 Cos[x1]^2 + 7.65348*10^7 Cos[x1]^3 - 100413. Cos[x2] - 7769.18 

Cos[x1] Cos[x2] + 4202.55 Cos[x1]^2 Cos[x2] - 3.80119*10^7 Cos[x2]^2 + 25843.3 Cos[x1] 

Cos[x2]^2 + 124200. Cos[x2]^3 + 3.59726*10^8 Sin[x1] - 3.44634*10^9 Sin[x1]^2 + 

2.98537*10^9 Sin[x1]^3 - 17878.4 Sin[x2] - 6878.28 Sin[x1] Sin[x2] + 13630.6 Sin[x1]^2 

Sin[x2] - 3.80348*10^7 Sin[x2]^2 + 41969.6 Sin[x1] Sin[x2]^2 + 20813.5 

Sin[x2]^3)/(2.8002*10^6 - 193934. x1 + 296.077 x1^2 - 19.4229 x1^3 - 6515.78 x2 + 145.785 

x1 x2 - 0.785409 x1^2 x2 + 4.78022 x2^2 - 0.0374808 x1 x2^2 + 0.000855661 x2^3 - 

3.05323*10^6 Cos[x1] + 6.17525*10^6 Cos[x1]^2 - 1.51268*10^7 Cos[x1]^3 - 1667.88 

Cos[x2] - 328.015 Cos[x1] Cos[x2] - 106.064 Cos[x1]^2 Cos[x2] - 6.25197*10^6 Cos[x2]^2 + 

1227.73 Cos[x1] Cos[x2]^2 + 2091.06 Cos[x2]^3 - 3.63546*10^6 Sin[x1] + 1.54832*10^8 

Sin[x1]^2 - 1.57591*10^8 Sin[x1]^3 - 334.202 Sin[x2] - 639.339 Sin[x1] Sin[x2] + 973.345 

Sin[x1]^2 Sin[x2] - 6.25324*10^6 Sin[x2]^2 + 2760.55 Sin[x1] Sin[x2]^2 + 186.185 

Sin[x2]^3) 

32-TOTN+4thON 

-0.00502754 - 0.000159129 x1 - 3.19154*10^-6 x1^2 -5.34623*10^-8 x1^3 - 8.08115*10^-10 

x1^4 + 0.274477 x2 - 0.00343606 x1 x2 - 0.000035982 x1^2 x2 + 7.63648*10^-7 x1^3 x2 + 

0.00157064 x2^2 - 8.40224*10^-6 x1 x2^2 - 1.08032*10^-7 x1^2 x2^2 - 6.46673*10^-6 x2^3 

+ 5.91744*10^-8 x1 x2^3 + 3.78244*10^-9 x2^4 + 0.0453686 Cos[x1] - 0.0310349 Cos[x1]^2 

+ 0.0704816 Cos[x1]^3 + 0.0462577 Cos[x2] - 0.113194 Cos[x1] Cos[x2] + 0.48607 

Cos[x1]^2 Cos[x2] + 0.219068 Cos[x2]^2 - 0.351471 Cos[x1] Cos[x2]^2 - 0.588317 

Cos[x2]^3 + 0.0649675 Sin[x1] + 0.0871189 Sin[x1]^2 + 0.10166 Sin[x1]^3 - 1.09513 Sin[x2] 

+ 0.746161 Sin[x1] Sin[x2] - 1.24828 Sin[x1]^2 Sin[x2] - 0.244143 Sin[x2]^2 - 0.0256369 

Sin[x1] Sin[x2]^2 + 2.10235 Sin[x2]^3 

33-TOTNR+4thONR 

(1.00002 + 1.00073 x1 + 1.02579 x1^2 + 1.57645 x1^3 - 0.225452 x1^4 + 1.00097 x2 + 

1.03711 x1 x2 + 2.00781 x1^2 x2 + 7.46365 x1^3 x2 + 1.05822 x2^2 + 2.41051 x1 x2^2 - 

16.4264 x1^2 x2^2 + 4.89508 x2^3 + 11.6423 x1 x2^3 + 2.60731 x2^4 + 0.999833 Cos[x1] + 

0.999973 Cos[x1]^2 + 0.99988 Cos[x1]^3 + 1.00005 Cos[x2] + 0.999989 Cos[x1] Cos[x2] + 

1.00003 Cos[x1]^2 Cos[x2] + 0.999979 Cos[x2]^2 + 0.999916 Cos[x1] Cos[x2]^2 + 1.00002 



72 

 

Cos[x2]^3 + 1.0001 Sin[x1] + 1.00004 Sin[x1]^2 + 1.00005 Sin[x1]^3 + 0.999976 Sin[x2] + 

1.99998 Sin[x1] Sin[x2] + 0.999993 Sin[x1]^2 Sin[x2] + 1.00004 Sin[x2]^2 + 1.00006 Sin[x1] 

Sin[x2]^2 + 0.999977 Sin[x2]^3)/(0.999961 + 1.00037 x1 + 1.1448 x1^2 + 11.1201 x1^3 + 

0.395741 x1^4 + 0.998105 x2 + 1.1027 x1 x2 + 12.136 x1^2 x2 - 1.43365 x1^3 x2 + 1.03723 

x2^2 + 18.0477 x1 x2^2 + 0.7269 x1^2 x2^2 + 48.1231 x2^3 - 0.435331 x1 x2^3 + 

0.00253352 x2^4 + 1.00213 Cos[x1] + 1.00035 Cos[x1]^2 + 1.00162 Cos[x1]^3 + 0.999785 

Cos[x2] + 1.00011 Cos[x1] Cos[x2] + 0.999845 Cos[x1]^2 Cos[x2] + 1.00017 Cos[x2]^2 + 

1.0011 Cos[x1] Cos[x2]^2 + 0.999949 Cos[x2]^3 + 0.99891 Sin[x1] + 0.999613 Sin[x1]^2 + 

0.999462 Sin[x1]^3 + 1.00006 Sin[x2] + 1.99991 Sin[x1] Sin[x2] + 0.999988 Sin[x1]^2 

Sin[x2] + 0.99979 Sin[x2]^2 + 0.999486 Sin[x1] Sin[x2]^2 + 1.00007 Sin[x2]^3) 

34-FOLNR+LR 
(1785.26 + 7.39057 x1 + 1.06146 x2 + 1.12395 Log[x2] - 542.859 Log[x1])/(-94.0417 - 

0.494544 x1 + 0.000463077 x2 + 0.0265098 Log[x2] + 31.9305 Log[x1]) 

35-FOLN+SON 
130.151 - 2.81394 x1 + 0.0194985 x1^2 + 0.0341223 x2 + 0.00172313 x1 x2 - 0.00001009 

x2^2 + 0.155487 Log[x2] - 6.99938 Log[x1] 

36-FOLNR+SONR 

(40238.8 - 1007.59 x1 + 7.38412 x1^2 + 2680.58 x2 - 30.8179 x1 x2 + 0.433313 x2^2 + 

254.254 Log[x2] - 1861.03 Log[x1])/(19347.4 - 247.081 x1 + 0.306676 x1^2 + 9.34185 x2 - 

0.0670296 x1 x2 - 0.00286666 x2^2 + 6.73411 Log[x2] - 81.3633 Log[x1]) 

37-FOLN+TON 

15.0865 - 0.272436 x1 - 0.00292811 x1^2 + 0.0000447138 x1^3 + 0.575466 x2 - 0.0119844 

x1 x2 + 0.0000869997 x1^2 x2 - 0.000224381 x2^2 + 2.02689*10^-6 x1 x2^2 + 1.20084*10^-

7 x2^3 + 0.143385 Log[x2] + 0.499587 Log[x1] 

38-FOLNR+TONR 

(-1.11246*10^7 - 56607.3 x1 - 953.958 x1^2 + 8.58859 x1^3 - 588623. x2 + 16447.4 x1 x2 - 

111.739 x1^2 x2 - 311.782 x2^2 + 3.08547 x1 x2^2 + 0.381756 x2^3 + 1489.35 Log[x2] + 

3.95033*10^6 Log[x1])/(-1.56941*10^6 + 17951.8 x1 + 373.52 x1^2 - 4.54147 x1^3 - 

5547.42 x2 + 105.187 x1 x2 - 0.511742 x1^2 x2 + 5.45908 x2^2 - 0.0356526 x1 x2^2 - 

0.000799761 x2^3 + 74.197 Log[x2] + 32758.4 Log[x1]) 

39-FOLN+4thON 

8.33142 - 0.0982929 x1 - 0.00191392 x1^2 - 9.14913*10^-6 x1^3 + 3.06749*10^-7 x1^4 + 

0.244321 x2 - 0.00246401 x1 x2 - 0.0000268445 x1^2 x2 + 6.01267*10^-7 x1^3 x2 + 

0.00106257 x2^2 - 8.5028*10^-6 x1 x2^2 - 8.14957*10^-8 x1^2 x2^2 - 3.84613*10^-6 x2^3 + 

5.04535*10^-8 x1 x2^3 + 3.27408*10^-10 x2^4 + 0.118661 Log[x2] + 0.75798 Log[x1] 

40-FOLNR+4thONR 

(1.13784*10^8 - 321153. x1 - 48257. x1^2 - 455.056 x1^3 + 7.92674 x1^4 + 2.87557*10^7 x2 

- 230267. x1 x2 - 2426.2 x1^2 x2 + 13.5905 x1^3 x2 - 402983. x2^2 + 4579.09 x1 x2^2 + 

1.90454 x1^2 x2^2 + 1455.34 x2^3 - 17.1217 x1 x2^3 - 5.54603*10^-6 x2^4 + 1.1182 

Log[x2] + 2.87782*10^7 Log[x1])/(1.83029*10^8 - 1.33666*10^6 x1 - 29829.1 x1^2 - 

199.456 x1^3 + 3.40003 x1^4 - 4.06825*10^6 x2 + 38308.9 x1 x2 + 385.723 x1^2 x2 - 

3.21572 x1^3 x2 + 18940. x2^2 - 308.611 x1 x2^2 + 1.00926 x1^2 x2^2 - 5.30365 x2^3 + 

0.062395 x1 x2^3 + 5.79103*10^-8 x2^4 - 0.268222 Log[x2] + 2.05081*10^7 Log[x1]) 
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Appendix C  

Expanded Model Expressions of the  

Case Studies – Moisture Output 

Models Name Models 

1-L 0.12677 - 0.000559424 x1 - 0.000328263 x2 

2-LR (71.7185 - 0.592572 x1 - 0.0720167 x2)/(454.917 - 3.66481 x1 +  4.01164 x2) 

3-SON 
0.307125 - 0.00332097 x1 + 0.0000121166 x1^2 - 0.00161085 x2 + 5.59495*10^-6 x1 x2 + 

2.847*10^-6 x2^2 

4-SONR 

(2.26714*10^7 - 116308. x1 + 979.434 x1^2 - 8113.61 x2 +  63.9685 x1 x2 + 28.2714 x2^2 - 

33799.5 Cos[x2] -  4.42467*10^6 Log[x1])/(3.09691*10^7 - 806338. x1 + 3837.83 x1^2 - 

46345.5 x2 -  205.478 x1 x2 + 1919.68 x2^2 - 520826. Cos[x2] + 2.58932*10^6 Log[x1]) 

5-TON 

0.679099 - 0.00676838 x1 - 0.0000892269 x1^2 + 1.09937*10^-6 x1^3 -  0.00684891 x2 + 

0.000127187 x1 x2 - 8.24113*10^-7 x1^2 x2 +  9.2*10^-6 x2^2 + 8.59612*10^-9 x1 x2^2 - 

1.56017*10^-8 x2^3 

6-TONR 

(124531. - 1956.79 x1 - 16.3574 x1^2 + 0.277255 x1^3 - 3297.76 x2 +  88.6517 x1 x2 - 

0.615177 x1^2 x2 - 0.12879 x2^2 +  0.0199973 x1 x2^2 - 0.00105445 x2^3)/(556304. - 

5427.63 x1 -  165.262 x1^2 + 1.90438 x1^3 + 3474.86 x2 - 65.3973 x1 x2 +  0.117678 x1^2 

x2 - 121.708 x2^2 + 1.64637 x1 x2^2 + 0.205334 x2^3) 

7-4thON 

0.760415 - 0.00431708 x1 - 0.000110394 x1^2 - 5.95087*10^-7 x1^3 +  1.76453*10^-8 x1^4 - 

0.0143282 x2 + 0.000184772 x1 x2 +  2.15976*10^-6 x1^2 x2 - 3.21668*10^-8 x1^3 x2 + 

0.0000677951 x2^2 -  1.84496*10^-6 x1 x2^2 + 1.47453*10^-8 x1^2 x2^2 +  2.71487*10^-8 

x2^3 - 8.01694*10^-10 x1 x2^3 + 2.69031*10^-11 x2^4 

8-4thONR 

(5.52397*10^9 - 1.51*10^8 x1 + 2.50171*10^6 x1^2 - 44875.9 x1^3 +    345.095 x1^4 + 

2.89132*10^7 x2 - 4.86034*10^6 x1 x2 +    123551. x1^2 x2 - 879.199 x1^3 x2 + 720376. 

x2^2 -  23704.7 x1 x2^2 + 220.121 x1^2 x2^2 + 102.463 x2^3 -  12.2171 x1 x2^3 + 1.13047 

x2^4)/(3.02846*10^10 - 4.28402*10^8 x1 -  4.0617*10^6 x1^2 + 8246.74 x1^3 + 740.579 

x1^4 - 8.41975*10^7 x2 +  6.70892*10^6 x1 x2 - 99522.7 x1^2 x2 + 108.008 x1^3 x2 - 

6.36674*10^6 x2^2 + 133686. x1 x2^2 - 430.01 x1^2 x2^2 -  33005.7 x2^3 + 502.109 x1 x2^3 

- 23.3397 x2^4) 

9-5thON 

0.58222 - 0.00130373 x1 - 0.0000690783 x1^2 - 7.90644*10^-7 x1^3 -  1.12456*10^-9 x1^4 + 

1.64032*10^-10 x1^5 - 0.00983683 x2 +  0.0000860669 x1 x2 + 1.79766*10^-6 x1^2 x2 + 

7.36726*10^-9 x1^3 x2 -  3.40231*10^-10 x1^4 x2 + 0.0000212271 x2^2 - 1.04889*10^-6 x1 

x2^2 -  7.95732*10^-9 x1^2 x2^2 + 2.19444*10^-10 x1^3 x2^2 +  3.15304*10^-7 x2^3 + 

2.54196*10^-9 x1 x2^3 -  6.21507*10^-11 x1^2 x2^3 - 1.42256*10^-9 x2^4 +  1.00192*10^-
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11 x1 x2^4 + 9.27437*10^-13 x2^5 

10-5thONR 

(-6.24355*10^9 + 1.27225*10^8 x1 + 697026. x1^2 - 18124.6 x1^3 -  70.699 x1^4 + 1.22298 

x1^5 + 4.69351*10^7 x2 - 622122. x1 x2 -  12712.5 x1^2 x2 + 120.977 x1^3 x2 + 0.288804 

x1^4 x2 -  850275. x2^2 + 14786.6 x1 x2^2 + 170.488 x1^2 x2^2 -  2.40229 x1^3 x2^2 + 

14079.8 x2^3 - 427.187 x1 x2^3 +  2.88268 x1^2 x2^3 + 2.60554 x2^4 + 0.0555936 x1 x2^4 -  

0.00989203 x2^5)/(-1.58162*10^10 - 1.756*10^8 x1 +  1.97975*10^7 x1^2 - 311901. x1^3 + 

2185.11 x1^4 - 7.52776 x1^5 +  1.3918*10^9 x2 - 3.2763*10^7 x1 x2 + 240127. x1^2 x2 -  

3259.79 x1^3 x2 + 31.1884 x1^4 x2 - 4.5572*10^7 x2^2 +  717797. x1 x2^2 + 7280.82 x1^2 

x2^2 - 111.017 x1^3 x2^2 +  1.09044*10^6 x2^3 - 31022.1 x1 x2^3 + 215.409 x1^2 x2^3 -  

37.8209 x2^4 + 2.0234 x1 x2^4 - 0.215956 x2^5) 

11-FOTN 
0.0430751 + 0.000540109 x1 - 0.000323641 x2 + 0.00585602 Cos[x1] +  0.00280079 Cos[x2] 

+ 0.0193855 Sin[x1] + 0.00101956 Sin[x2] 

12-FOTNR 

(734.927 - 6.06166 x1 - 0.432269 x2 + 9.69916 Cos[x1] +  32.9546 Cos[x2] + 51.4972 Sin[x1] 

+ 25.9792 Sin[x2])/(10480.5 -  121.492 x1 + 64.8598 x2 - 273.649 Cos[x1] + 927.451 Cos[x2] 

-  1148.84 Sin[x1] + 813.999 Sin[x2]) 

13-SOTN 

0.00929899 + 0.00435651 Cos[x1] + 0.0102278 Cos[x1]^2 +  0.0131686 Cos[x2] + 

0.00295636 Cos[x1] Cos[x2] +  0.0325674 Cos[x2]^2 + 0.00176438 Sin[x1] + 0.0200505 

Sin[x1]^2 +  0.0122466 Sin[x2] - 0.00189071 Sin[x1] Sin[x2] - 0.00855751 Sin[x2]^2 

14-SOTNR 

(-258.448 + 21.5438 Cos[x1] - 129.705 Cos[x1]^2 + 19.7083 Cos[x2] +  41.9817 Cos[x1] 

Cos[x2] + 414.254 Cos[x2]^2 + 16.956 Sin[x1] -  171.407 Sin[x1]^2 - 1.1461 Sin[x2] + 

4.26493 Sin[x1] Sin[x2] +  414.151 Sin[x2]^2)/(98.2437 + 491.617 Cos[x1] +  172.357 

Cos[x1]^2 + 672.438 Cos[x2] + 1355.71 Cos[x1] Cos[x2] +  153.666 Cos[x2]^2 - 456.082 

Sin[x1] + 491.147 Sin[x1]^2 -  42.9708 Sin[x2] + 131.747 Sin[x1] Sin[x2] + 150.833 

Sin[x2]^2) 

15-TOTN 

0.00893416 + 0.00183501 Cos[x1] + 0.0107546 Cos[x1]^2 +  0.00312068 Cos[x1]^3 - 

0.00329505 Cos[x2] +  0.0049223 Cos[x1] Cos[x2] - 0.00895885 Cos[x1]^2 Cos[x2] +  

0.0314299 Cos[x2]^2 + 0.0000174216 Cos[x1] Cos[x2]^2 +  0.0333626 Cos[x2]^3 - 

0.000357978 Sin[x1] + 0.0156993 Sin[x1]^2 +  0.0107879 Sin[x1]^3 + 0.0392752 Sin[x2] +  

0.00734724 Sin[x1] Sin[x2] - 0.0145669 Sin[x1]^2 Sin[x2] -  0.00836922 Sin[x2]^2 - 

0.00510014 Sin[x1] Sin[x2]^2 -  0.0316106 Sin[x2]^3 

16-TOTNR 

(0.343026 + 1.02264 Cos[x1] - 0.420857 Cos[x1]^2 -  0.998823 Cos[x1]^3 + 0.118933 

Cos[x2] +  0.0713686 Cos[x1] Cos[x2] - 0.0532898 Cos[x1]^2 Cos[x2] +  0.168127 

Cos[x2]^2 - 0.00491018 Cos[x1] Cos[x2]^2 +  0.00859075 Cos[x2]^3 + 0.297465 Sin[x1] - 

0.215802 Sin[x1]^2 +  0.166643 Sin[x1]^3 + 0.0390702 Sin[x2] +  0.256846 Sin[x1] Sin[x2] 

+ 0.160711 Sin[x1]^2 Sin[x2] +  0.232336 Sin[x2]^2 + 0.253004 Sin[x1] Sin[x2]^2 + 

0.00986226 Sin[x2]^3)/(1.49086 + 1.02933 Cos[x1] +  2.46228 Cos[x1]^2 + 2.42122 

Cos[x1]^3 + 2.20341 Cos[x2] +  2.2127 Cos[x1] Cos[x2] - 0.220898 Cos[x1]^2 Cos[x2] -  

0.210736 Cos[x2]^2 + 0.254794 Cos[x1] Cos[x2]^2 +  0.548699 Cos[x2]^3 + 1.67476 Sin[x1] 

- 3.96066 Sin[x1]^2 +  6.48449 Sin[x1]^3 + 1.21535 Sin[x2] + 7.48491 Sin[x1] Sin[x2] +  

0.426784 Sin[x1]^2 Sin[x2] + 1.60681 Sin[x2]^2 +  6.81565 Sin[x1] Sin[x2]^2 + 0.568696 

Sin[x2]^3) 

17-FOLN 0.164368 + 0.0115526 Log[x2] - 0.0299538 Log[x1] 

18-FOLNR 
(17.6768 + 75.113 Log[x2] - 2.82453 Log[x1])/(450.346 + 2046.83 Log[x2] - 67.5324 

Log[x1]) 

19-SOLN 
-3.29681 + 0.157466 Log[x2] + 0.0363563 Log[x2]^2 + 1.57489 Log[x1] -  0.0338237 

Log[x2] Log[x1] - 0.186908 Log[x1]^2 

20-SOLNR (2576.9 + 268.914 Log[x2] - 665.114 Log[x2]^2 - 1114.45 Log[x1] +  113.225 Log[x2] 
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Log[x1] + 114.51 Log[x1]^2)/(31721.2 +  20897.9 Log[x2] - 22743.8 Log[x2]^2 - 15020.9 

Log[x1] +  1219.65 Log[x2] Log[x1] + 1590.41 Log[x1]^2) 

21-SOTNR+LR 

(-18.7362 - 0.166425 x1 + 0.00901176 x2 - 47.8773 Cos[x1] -  222.426 Cos[x1]^2 - 2.42156 

Cos[x2] - 0.563979 Cos[x1] Cos[x2] + 164.961 Cos[x2]^2 - 220.975 Sin[x1] + 148.977 

Sin[x1]^2 - 1.68722 Sin[x2] - 0.419271 Sin[x1] Sin[x2] + 159.28 Sin[x2]^2)/(97.0003 - 

0.264921 x1 + 2.68138 x2 - 57.261 Cos[x1] - 303.388 Cos[x1]^2 - 38.4144 Cos[x2] - 2.55032 

Cos[x1] Cos[x2] + 173.642 Cos[x2]^2 - 300.764 Sin[x1] + 231.043 Sin[x1]^2 - 45.1304 

Sin[x2] - 14.989 Sin[x1] Sin[x2] + 14.1368 Sin[x2]^2) 

22-TOTNR+LR 

(966.203 - 9.52491 x1 + 0.378491 x2 + 388.441 Cos[x1] -    572.666 Cos[x1]^3 + 330.523 

Cos[x2] + 17.3647 Cos[x1]^2 Cos[x2] +    201.684 Cos[x1] Cos[x2]^2 - 296.705 Cos[x2]^3 + 

1538.79 Sin[x1] -    2585.88 Sin[x1]^3 + 9.37116 Sin[x2] - 346.448 Sin[x1]^2 Sin[x2] +    

260.358 Sin[x1] Sin[x2]^2 - 239.921 Sin[x2]^3)/(-1395.73 -    22.6374 x1 + 9.19494 x2 - 

3840.71 Cos[x1] - 2870.19 Cos[x1]^3 +    9026.66 Cos[x2] + 1950.67 Cos[x1]^2 Cos[x2] +    

6612.66 Cos[x1] Cos[x2]^2 - 8202.05 Cos[x2]^3 - 340.877 Sin[x1] +    4485.9 Sin[x1]^3 + 

2325.99 Sin[x2] - 11430.1 Sin[x1]^2 Sin[x2] + 10368.7 Sin[x1] Sin[x2]^2 - 11448.1 

Sin[x2]^3) 

23-SOLNR+LR 

(-8402.26 + 7.47437 x1 + 0.0653856 x2 - 3.84301 Log[x2] -  3.08775 Log[x2]^2 + 4034.54 

Log[x1] + 1.14012 Log[x2] Log[x1] -  516.418 Log[x1]^2)/(21040.3 + 87.4853 x1 - 13.9647 

x2 -  193.175 Log[x2] - 304.049 Log[x2]^2 - 7253.85 Log[x1] +  38.5813 Log[x2] Log[x1] + 

193.99 Log[x1]^2) 

24-SOTN+TON 

0.0242585 + 0.000288828 x1 + 3.29086*10^-6 x1^2 +  3.60585*10^-8 x1^3 - 0.00612441 x2 

+ 0.000101852 x1 x2 -  6.36616*10^-7 x1^2 x2 + 0.0000104422 x2^2 - 4.06359*10^-10 x1 

x2^2 -  1.65771*10^-8 x2^3 + 0.0084296 Cos[x1] + 0.0217793 Cos[x1]^2 -  0.00551218 

Cos[x2] - 0.00356519 Cos[x1] Cos[x2] +  0.029913 Cos[x2]^2 + 0.024088 Sin[x1] + 

0.0711347 Sin[x1]^2 -  0.00166752 Sin[x2] + 0.00509679 Sin[x1] Sin[x2] + 0.0355352 

Sin[x2]^2 

25-SOTNR+TONR 

(-3.49694*10^7 - 406961. x1 + 3750.82 x1^2 - 9.74601 x1^3 -  560711. x2 + 19842.6 x1 x2 - 

170.967 x1^2 x2 + 128.316 x2^2 +  9.97774 x1 x2^2 + 0.00310777 x2^3 - 4.52764*10^6 

Cos[x1] +  5.03835*10^7 Cos[x1]^2 - 9785.99 Cos[x2] +  41072.4 Cos[x1] Cos[x2] - 

5.63978*10^6 Cos[x2]^2 -  1.29297*10^7 Sin[x1] + 6.23008*10^7 Sin[x1]^2 - 416201. 

Sin[x2] -  1.29779*10^6 Sin[x1] Sin[x2] -  4.81228*10^6 Sin[x2]^2)/(9.05751*10^6 + 

212547. x1 - 3528.3 x1^2 -  35.6881 x1^3 + 153625. x2 - 14207.5 x1 x2 - 65.4825 x1^2 x2 +  

9147.09 x2^2 + 14.98 x1 x2^2 + 205.039 x2^3 -  1.88911*10^7 Cos[x1] + 2.05798*10^7 

Cos[x1]^2 -  1.70927*10^6 Cos[x2] + 15579.3 Cos[x1] Cos[x2] +  5.53372*10^6 Cos[x2]^2 - 

1.03327*10^7 Sin[x1] -  5.01664*10^7 Sin[x1]^2 - 835075. Sin[x2] -  9.18073*10^6 Sin[x1] 

Sin[x2] + 3.34294*10^7 Sin[x2]^2) 

26-SOTN+4thON 

0.0216462 + 0.00026166 x1 + 3.04521*10^-6 x1^2 + 3.43308*10^-8 x1^3 + 3.77622*10^-10 

x1^4 - 0.0142937 x2 + 0.000181692 x1 x2 +  2.13653*10^-6 x1^2 x2 - 3.1564*10^-8 x1^3 x2 

+ 0.0000702405 x2^2 -  1.89134*10^-6 x1 x2^2 + 1.49415*10^-8 x1^2 x2^2 +  2.70059*10^-

8 x2^3 - 7.83563*10^-10 x1 x2^3 + 2.3605*10^-11 x2^4 -  0.0018741 Cos[x1] + 0.0193819 

Cos[x1]^2 - 0.00514511 Cos[x2] -  0.00266761 Cos[x1] Cos[x2] + 0.0271939 Cos[x2]^2 +  

0.0269715 Sin[x1] + 0.0636743 Sin[x1]^2 + 0.000148422 Sin[x2] +  0.00425488 Sin[x1] 

Sin[x2] + 0.0311808 Sin[x2]^2 

27-SOTNR+4thONR 

(-1.31971*10^6 - 36865.8 x1 - 826.838 x1^2 - 15.674 x1^3 +  0.68446 x1^4 - 74180.8 x2 + 

55.8769 x1 x2 - 3.43203 x1^2 x2 +  0.549029 x1^3 x2 + 10.0705 x2^2 + 4.49059 x1 x2^2 -  

0.431765 x1^2 x2^2 + 10.2347 x2^3 + 0.0010583 x1 x2^3 -  0.00421194 x2^4 + 

6.43971*10^6 Cos[x1] - 1.4234*10^7 Cos[x1]^2 - 137290. Cos[x2] - 186692. Cos[x1] 

Cos[x2] - 2.34878*10^6 Cos[x2]^2 + 6.54593*10^6 Sin[x1] + 5.78968*10^6 Sin[x1]^2 + 

122803. Sin[x2] - 7933.64 Sin[x1] Sin[x2] - 2.49102*10^6 Sin[x2]^2)/(323246. - 25805. x1 - 

1025.21 x1^2 - 27.6709 x1^3 + 0.295251 x1^4 -  929293. x2 - 3273.64 x1 x2 + 57.2448 x1^2 

x2 + 1.95182 x1^3 x2 +  19620.2 x2^2 - 2.11836 x1 x2^2 - 0.138905 x1^2 x2^2 +  61.2094 

x2^3 - 6.35111 x1 x2^3 + 2.32281 x2^4 +  9.20869*10^6 Cos[x1] - 4.16803*10^7 Cos[x1]^2 -  

4.55693*10^6 Cos[x2] - 3.87484*10^6 Cos[x1] Cos[x2] +  1.12193*10^7 Cos[x2]^2 + 

9.98668*10^6 Sin[x1] +  9.35622*10^6 Sin[x1]^2 + 500475. Sin[x2] + 768386. Sin[x1] 
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Sin[x2] + 1.7191*10^7 Sin[x2]^2) 

28-SOTN+5thON 

0.0192247 + 0.000232698 x1 + 2.7161*10^-6 x1^2 + 3.07678*10^-8 x1^3 +  3.40769*10^-10 

x1^4 + 3.71669*10^-12 x1^5 - 0.00980464 x2 +  0.0000847625 x1 x2 + 1.77887*10^-6 x1^2 

x2 + 7.33517*10^-9 x1^3 x2 -  3.35805*10^-10 x1^4 x2 + 0.0000191929 x2^2 - 1.01489*10^-

6 x1 x2^2 -  7.58966*10^-9 x1^2 x2^2 + 2.13689*10^-10 x1^3 x2^2 +  3.4126*10^-7 x2^3 + 

1.90724*10^-9 x1 x2^3 -  5.81711*10^-11 x1^2 x2^3 - 1.43779*10^-9 x2^4 +  1.01356*10^-

11 x1 x2^4 + 9.38293*10^-13 x2^5 - 0.00485126 Cos[x1] +  0.0168508 Cos[x1]^2 - 

0.00410729 Cos[x2] -  0.00216205 Cos[x1] Cos[x2] + 0.0265735 Cos[x2]^2 +  0.0270676 

Sin[x1] + 0.0579445 Sin[x1]^2 + 0.00134839 Sin[x2] +  0.00433191 Sin[x1] Sin[x2] + 

0.0251471 Sin[x2]^2 

29-SOTNR+5thONR 

(-1.03785*10^11 + 9.2379*10^8 x1 - 1.95606*10^6 x1^2 - 25154.9 x1^3 -  1836.71 x1^4 - 

26.0788 x1^5 + 2.83175*10^9 x2 -  7.69131*10^6 x1 x2 - 471580. x1^2 x2 + 3.31497 x1^3 x2 

+  56.4355 x1^4 x2 + 2.76335*10^6 x2^2 + 242677. x1 x2^2 -  4100.68 x1^2 x2^2 + 68.3922 

x1^3 x2^2 - 197728. x2^3 +  1723.64 x1 x2^3 - 77.9789 x1^2 x2^3 + 24.5249 x2^4 +  31.45 

x1 x2^4 - 4.81977 x2^5 - 3.34911*10^10 Cos[x1] + 1.29286*10^11 Cos[x1]^2 - 

1.14047*10^10 Cos[x2] -  4.19282*10^10 Cos[x1] Cos[x2] - 6.50039*10^10 Cos[x2]^2 -  

1.85813*10^11 Sin[x1] + 2.7656*10^11 Sin[x1]^2 +  4.56726*10^9 Sin[x2] - 9.45237*10^9 

Sin[x1] Sin[x2] -  4.61544*10^10 Sin[x2]^2)/(-3.30084*10^10 - 9.16298*10^8 x1 -  

6.37993*10^6 x1^2 - 132335. x1^3 + 1586.72 x1^4 - 32.657 x1^5 - 2.95405*10^8 x2 + 

4.19145*10^7 x1 x2 + 321145. x1^2 x2 - 10631.4 x1^3 x2 + 69.9187 x1^4 x2 + 7.62392*10^7 

x2^2 + 1.58839*10^6 x1 x2^2 - 1953.08 x1^2 x2^2 + 157.939 x1^3 x2^2 + 486145. x2^3 + 

5244.76 x1 x2^3 + 56.8884 x1^2 x2^3 - 10781.7 x2^4 - 146.16 x1 x2^4 - 73.3219 x2^5 +  

4.29823*10^11 Cos[x1] - 1.04524*10^11 Cos[x1]^2 -  8.38238*10^10 Cos[x2] - 5.678*10^11 

Cos[x1] Cos[x2] -  3.04898*10^11 Cos[x2]^2 + 1.8199*10^10 Sin[x1] -  1.16872*10^11 

Sin[x1]^2 + 6.66474*10^10 Sin[x2] -  1.63002*10^11 Sin[x1] Sin[x2] - 5.33468*10^10 

Sin[x2]^2) 

30-TOTN+TON 

0.0231692 + 0.000288138 x1 + 3.44854*10^-6 x1^2 +  3.99499*10^-8 x1^3 - 0.0041154 x2 + 

0.0000462323 x1 x2 -  2.66919*10^-7 x1^2 x2 + 0.0000105009 x2^2 + 7.85453*10^-10 x1 

x2^2 -  1.64354*10^-8 x2^3 + 0.0062655 Cos[x1] + 0.0246745 Cos[x1]^2 +  0.0121298 

Cos[x1]^3 + 0.0037673 Cos[x2] -  0.00551644 Cos[x1] Cos[x2] - 0.0000432365 Cos[x1]^2 

Cos[x2] +  0.027316 Cos[x2]^2 - 0.00854449 Cos[x1] Cos[x2]^2 -  0.0145653 Cos[x2]^3 + 

0.00992135 Sin[x1] + 0.053064 Sin[x1]^2 +  0.0445347 Sin[x1]^3 + 0.00407067 Sin[x2] +  

0.0236697 Sin[x1] Sin[x2] - 0.0343388 Sin[x1]^2 Sin[x2] +  0.0352573 Sin[x2]^2 - 

0.00297197 Sin[x1] Sin[x2]^2 +  0.00349978 Sin[x2]^3 

31-TOTNR+TONR 

(-3.24149*10^6 - 68116.4 x1 - 712.916 x1^2 - 1.61768 x1^3 - 49929.1 x2 + 1642.83 x1 x2 - 

10.6507 x1^2 x2 - 100.745 x2^2 -  0.680877 x1 x2^2 + 0.569521 x2^3 + 7.34784*10^6 

Cos[x1] +  2.33948*10^7 Cos[x1]^2 - 1.20664*10^6 Cos[x1]^3 +  82229.1 Cos[x2] - 33225.2 

Cos[x1] Cos[x2] -  18967.8 Cos[x1]^2 Cos[x2] + 6.11027*10^6 Cos[x2]^2 +  328062. 

Cos[x1] Cos[x2]^2 - 35600.6 Cos[x2]^3 +  3.62624*10^7 Sin[x1] - 3.56356*10^7 Sin[x1]^2 -  

6.90859*10^6 Sin[x1]^3 + 303112. Sin[x2] +  182152. Sin[x1] Sin[x2] - 380116. Sin[x1]^2 

Sin[x2] +  5.42983*10^6 Sin[x2]^2 - 101146. Sin[x1] Sin[x2]^2 -  357317. 

Sin[x2]^3)/(2.51257*10^7 + 76394.6 x1 - 1696.78 x1^2 -  3.86605 x1^3 - 3.56524*10^6 x2 + 

119213. x1 x2 - 791.76 x1^2 x2 -  8604.48 x2^2 - 49.4245 x1 x2^2 + 48.4076 x2^3 - 

4.53858*10^6 Cos[x1] - 3.93759*10^7 Cos[x1]^2 -  9.6657*10^6 Cos[x1]^3 + 6.68298*10^6 

Cos[x2] -  1.50593*10^6 Cos[x1] Cos[x2] - 781698. Cos[x1]^2 Cos[x2] +  6.31412*10^6 

Cos[x2]^2 + 6.63026*10^6 Cos[x1] Cos[x2]^2 -  3.67269*10^6 Cos[x2]^3 - 5.8536*10^6 

Sin[x1] +  4.00963*10^7 Sin[x1]^2 - 7.44009*10^7 Sin[x1]^3 +  2.94271*10^7 Sin[x2] + 

8.28418*10^6 Sin[x1] Sin[x2] -  1.30833*10^7 Sin[x1]^2 Sin[x2] - 2.40233*10^7 Sin[x2]^2 + 

601430. Sin[x1] Sin[x2]^2 - 3.84775*10^7 Sin[x2]^3) 

32-TOTN+4thON 

0.0209952 + 0.000262927 x1 + 3.17656*10^-6 x1^2 +  3.72425*10^-8 x1^3 + 4.26648*10^-

10 x1^4 - 0.0116208 x2 +  0.000140702 x1 x2 + 1.6647*10^-6 x1^2 x2 - 2.5136*10^-8 x1^3 

x2 +  0.0000598527 x2^2 - 1.52225*10^-6 x1 x2^2 + 1.2558*10^-8 x1^2 x2^2 +  

9.08167*10^-9 x2^3 - 7.98576*10^-10 x1 x2^3 + 5.61846*10^-11 x2^4 +  0.000386313 

Cos[x1] + 0.0221986 Cos[x1]^2 + 0.00487097 Cos[x1]^3 +  0.00847042 Cos[x2] - 

0.00448216 Cos[x1] Cos[x2] -  0.00119968 Cos[x1]^2 Cos[x2] + 0.0255634 Cos[x2]^2 -  

0.00408857 Cos[x1] Cos[x2]^2 - 0.0191194 Cos[x2]^3 +  0.0125526 Sin[x1] + 0.0487018 

Sin[x1]^2 + 0.0444176 Sin[x1]^3 -  0.000441289 Sin[x2] + 0.0150495 Sin[x1] Sin[x2] -  

0.0183494 Sin[x1]^2 Sin[x2] + 0.031097 Sin[x2]^2 -  0.00576173 Sin[x1] Sin[x2]^2 + 
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0.00680698 Sin[x2]^3 

33-TOTNR+4thONR 

(1.00032 + 1.01274 x1 + 1.38719 x1^2 + 6.40088 x1^3 + 0.522508 x1^4 +    1.00991 x2 + 

1.34335 x1 x2 + 8.34394 x1^2 x2 - 1.75491 x1^3 x2 +    1.27284 x2^2 + 7.43434 x1 x2^2 + 

1.40948 x1^2 x2^2 +    8.17719 x2^3 - 0.655218 x1 x2^3 + 0.138076 x2^4 +    0.995985 

Cos[x1] + 0.999352 Cos[x1]^2 + 0.997066 Cos[x1]^3 +    0.999435 Cos[x2] + 1.00027 

Cos[x1] Cos[x2] +    0.999701 Cos[x1]^2 Cos[x2] + 1.00033 Cos[x2]^2 +    0.99737 Cos[x1] 

Cos[x2]^2 + 0.999562 Cos[x2]^3 + 1.00235 Sin[x1] +    1.00097 Sin[x1]^2 + 1.00121 

Sin[x1]^3 + 1.00055 Sin[x2] +    2.00626 Sin[x1] Sin[x2] + 1.00095 Sin[x1]^2 Sin[x2] +    

0.999987 Sin[x2]^2 + 1.00088 Sin[x1] Sin[x2]^2 +    1.00042 Sin[x2]^3)/(0.999929 + 

0.996453 x1 + 0.844088 x1^2 -    4.07737 x1^3 + 4.36982 x1^4 + 0.997255 x2 + 0.873944 x1 

x2 -    3.38736 x1^2 x2 - 8.82901 x1^3 x2 + 0.905885 x2^2 -    2.19621 x1 x2^2 + 8.93325 

x1^2 x2^2 - 1.72324 x2^3 -    10.8257 x1 x2^3 + 8.25796 x2^4 + 1.00031 Cos[x1] +    1.00005 

Cos[x1]^2 + 1.0002 Cos[x1]^3 + 1.00006 Cos[x2] +    1.00002 Cos[x1] Cos[x2] + 1.00004 

Cos[x1]^2 Cos[x2] +    0.999964 Cos[x2]^2 + 1.00019 Cos[x1] Cos[x2]^2 +    1.00006 

Cos[x2]^3 + 0.999765 Sin[x1] + 0.999881 Sin[x1]^2 +    0.999871 Sin[x1]^3 + 0.999882 

Sin[x2] + 1.99932 Sin[x1] Sin[x2] +    0.999884 Sin[x1]^2 Sin[x2] + 0.999965 Sin[x2]^2 +    

0.999905 Sin[x1] Sin[x2]^2 + 0.999917 Sin[x2]^3) 

34-FOLNR+LR 
(211.339 + 0.503878 x1 - 0.0194479 x2 + 0.535497 Log[x2] -  55.6631 Log[x1])/(-4679.47 - 

21.0836 x1 + 1.69883 x2 +  15.6621 Log[x2] + 1464.27 Log[x1]) 

35-FOLN+SON 
0.301894 - 0.00405219 x1 + 0.0000160018 x1^2 - 0.00163856 x2 +  5.6541*10^-6 x1 x2 + 

2.90552*10^-6 x2^2 - 0.00330706 Log[x2] +  0.00916418 Log[x1] 

36-FOLNR+SONR 

(2.26714*10^7 - 116308. x1 + 979.434 x1^2 - 8113.61 x2 +  63.9685 x1 x2 + 28.2714 x2^2 - 

33799.5 Log[x2] -  4.42467*10^6 Log[x1])/(3.09691*10^7 - 806338. x1 + 3837.83 x1^2 - 

46345.5 x2 -  205.478 x1 x2 + 1919.68 x2^2 - 520826. Log[x2] +  2.58932*10^6 Log[x1]) 

37-FOLN+TON 

0.561752 - 0.00736437 x1 - 0.000090157 x1^2 + 1.10707*10^-6 x1^3 -  0.00673525 x2 + 

0.000121724 x1 x2 - 7.79189*10^-7 x1^2 x2 +  9.68359*10^-6 x2^2 + 4.68174*10^-9 x1 

x2^2 - 1.58846*10^-8 x2^3 -  0.00371593 Log[x2] + 0.0385104 Log[x1] 

38-FOLNR+TONR 

(151482. - 2339.14 x1 - 12.7875 x1^2 + 0.284316 x1^3 - 3282.52 x2 +  91.3465 x1 x2 - 

0.662545 x1^2 x2 + 0.0527751 x2^2 +  0.0231602 x1 x2^2 + 0.000976266 x2^3 + 263.509 

Log[x2] -  4821.87 Log[x1])/(668968. - 20305.4 x1 + 17.4808 x1^2 +  1.19429 x1^3 + 

11323.4 x2 - 267.232 x1 x2 + 1.49467 x1^2 x2 -  95.6669 x2^2 + 0.843192 x1 x2^2 + 

0.565529 x2^3 + 6312.67 Log[x2] +  63917.2 Log[x1]) 

39-FOLN+4thON 

0.592372 - 0.00551175 x1 - 0.000116077 x1^2 - 5.88615*10^-7 x1^3 +  1.81939*10^-8 x1^4 - 

0.0151752 x2 + 0.000194591 x1 x2 +  2.28577*10^-6 x1^2 x2 - 3.36367*10^-8 x1^3 x2 + 

0.0000745524 x2^2 -  2.00149*10^-6 x1 x2^2 + 1.56284*10^-8 x1^2 x2^2 +  2.45576*10^-8 

x2^3 - 7.58509*10^-10 x1 x2^3 + 2.5168*10^-11 x2^4 -  0.00400813 Log[x2] + 0.0628062 

Log[x1] 

40-FOLNR+4thONR 

(9.63872*10^6 - 76665.9 x1 - 1696.74 x1^2 - 35.3172 x1^3 +  0.614054 x1^4 - 403192. x2 + 

5413.89 x1 x2 + 95.7471 x1^2 x2 -  1.337 x1^3 x2 + 2097.12 x2^2 - 66.9089 x1 x2^2 + 

0.587559 x1^2 x2^2 + 0.022218 x2^3 - 0.0203753 x1 x2^3 +  0.00153669 x2^4 + 21242.7 

Cos[x2] + 360674. Log[x1])/(2.91749*10^6 - 755722. x1 - 18905. x1^2 -  44.633 x1^3 + 

2.87401 x1^4 - 307113. x2 + 8192.93 x1 x2 +  47.3433 x1^2 x2 - 1.73298 x1^3 x2 - 17417.2 

x2^2 +  371.967 x1 x2^2 - 1.72806 x1^2 x2^2 - 99.4177 x2^3 +  1.90221 x1 x2^3 - 0.147357 

x2^4 + 276417. Cos[x2] +  2.12239*10^7 Log[x1]) 
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Appendix D  

Results of the Neuro-regression 

models boundedness 

 ENERGY (kWh) MOISTURE (%) 

 Min Max Min Max 

1-L -3.09002 51.2355 -0.0192 0.0904 

2-LR -0.08642 53.5356 -0.0001 0.1532 

3-SON -1.3751 54.0085 -0.0007 0.1424 

4-SONR -0.5055 54.4104 0.0111 0.1473 

5-TON -0.7882 54.5859 0.0058 0.1640 

6-TONR -0.6734 55.1037 0.0088 0.1546 

7-4thON -0.6496 55.1424 -0.0042 0.1649 

8-4thONR 0.1636 1.3*10^13 0.0111 0.1506 

9-5thON -0.6505 54.3461 0.0053 0.1587 

10-5thONR -0.2997 55.0832 -5.1*10^11 5.7*10^9 

11-FOTN -2.2222 51.7891 -0.0198 0.0938 

12-FOTNR -2.1*10^16 40.1728 0.0015 0.4168 

13-SOTN 12.8151 41.8999 -0.0064 0.0786 

14-SOTNR -2.4*10^15 7.6*10^12 -2.6*10^10 4.4*10^13 

15-TOTN 13.1550 49.8808 -0.0024 0.0864 

16-TOTNR -2.9*10^12 8.2*10^15 -2.2*10^9 2.8*10^11 

17-FOLN 18.0854 30.4703 0.0197 0.0508 

18-FOLNR 19.6278 26.7954 -2.6*10^8 4.6*10^10 

19-SOLN 10.0695 35.0202 0.0105 0.0730 
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20-SOLNR -3.0*10^12 6.1*10^13 -6.5*10^10 0.0312 

21-SOTNR+LR -5.4*10^14 3.2*10^14 -2.2101 2.5*10^12 

22-TOTNR+LR -1.4*10^14 4.8*10^14 -1.6*10^12 5.0*10^11 

23-SOLNR+LR -0.3982 54.0859 0.0038 0.3769 

24-SOTN+TON -0.5119 54.3952 -0.0426 0.1030 

25-SOTNR+TONR -1.8*10^15 1.4*10^16 -3.9*10^13 7.8*10^11 

26-SOTN+4thON 0.1518 54.9578 -0.0293 0.1145 

27-SOTNR+4thONR -1.2*10^15 55.4625 0.0083 3.3*10^13 

28-SOTN+5thON -0.5750 54.3692 -0.0239 0.1642 

29-SOTNR+5thONR -1.1*10^12 1.6*10^15 -3.0*10^11 5.1*10^11 

30-TOTN+TON -0.9122 54.2703 -0.0952 0.1740 

31-TOTNR+TONR -5.6*10^13 1.8855 -1.1*10^15 1.0*10^12 

32-TOTN+4thON -0.1967 55.6535 0.0115 0.1123 

33-TOTNR+4thONR -0.3925 53.6216 -0.0622 0.1442 

34-FOLNR+LR -0.3954 54.1126 0.0010 0.2137 

35-FOLN+SON -1.2837 54.0115 -0.0048 0.1410 

36-FOLNR+SONR -1.9140 55.0628 -2.6*10^8 4.6*10^10 

37-FOLN+TON -0.7415 54.6143 0.0083 0.1632 

38-FOLNR+TONR -0.6601 55.1064 0.0100 0.2248 

39-FOLN+4thON -0.5748 55.1514 -0.0070 0.1649 

40-FOLNR+4thONR -0.6628 3.6*10^12 -13728.6 0.1707 
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