

Optimization of Drying Process of

Plastic Granules Based on Stochastic

Method with Neuro Regression

Approach

Submitted to the Graduate School of Natural and Applied Sciences

in partial fulfillment of the requirements for the degree of

Master of Science

in Mechanical Engineering

by

Mustafa DİNÇ

ORCID 0000-0003-1775-4549

July, 2023

This is to certify that we have read the thesis Optimization of Drying Process of

Plastic Granules Based on Stochastic Method with Neuro Regression

Approach submitted by Mustafa Dinç, and it has been judged to be successful,

in scope and in quality, at the defense exam and accepted by our jury as a

MASTER’S THESIS.

APPROVED BY:

Advisor: Assoc. Prof. Dr. Levent Aydın

 İzmir Kâtip Çelebi University

Committee Members:

 Assoc. Prof. Dr. S. Bahar Bozkurt

 Manisa Celal Bayar University

 Assist. Prof. Dr. Ebubekir Atan

 İzmir Kâtip Çelebi University

Date of Defense: July 20, 2023

ii

Declaration of Authorship

I, Mustafa Dinç, declare that this thesis titled Optimization of Drying Process

of Plastic Granules Based on Stochastic Method with Neuro Regression

Approach and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for the

Master’s degree at this university.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this university or any other institution, this has

been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

This thesis is entirely my own work, with the exception of such quotations.

• I have acknowledged all major sources of assistance.

• Where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have

contributed myself.

Date: 20.07.2023

iii

 Optimization of Drying Process of Plastic Granules

Based on Stochastic Method with Neuro Regression

Approach

Abstract

Polymers contain moisture due to their chemical structure. Moisture in polymers

is important for the quality of the final product and ease of processing. For this

reason, polymers are subjected to drying before processes such as injection and

extrusion. Drying is carried out at temperatures and times specified by the

polymer suppliers. Over-drying leads to increased viscosity (processing difficulty)

while under-drying leads to flow marks, burrs, and reduced tensile strength and

impact strength. Over-drying also causes excessive energy consumption. In this

study, the drying process optimization of Acrylonitrile Butadiene Styrene (ABS)

polymer was studied. As the first part of the data collection part, different

scenarios were determined with the Desing of Experiment (DoE) approach. For

these scenarios, drying time and temperature values reported by ABS polymer

manufacturers were chosen as design parameters. ABS granules were dried with a

desiccant type dryer at different temperatures. For the outputs, samples were taken

at certain periods and the moisture by weight and energy consumption of the

samples were determined by energy analyzer and moisture meter. In the second

part, Wolfram Mathematica program is used for numerical operations.

Mathematical models were constructed using nonlinear multiple neuro-regression

modeling to describe the phenomenon between input and output parameters. R2

model evaluation criterion was used to test the success of the proposed models in

the training, testing and verification stages. The engineering limits of the models

were checked and the model that gave the best results was selected. Finally,

iv

optimization of system parameters was performed using different stochastic

optimization methods Differential Evolution, Nelder–Mead, Simulated Annealing

and Random Search.

Keywords: ABS, drying process, neuro-regression approach, stochastic

optimization, energy consumption

v

Nöro Regresyon Yaklaşımı Kullanılarak Stokastik

Metot Tabanlı Plastik Granüllerin Kurutma Prosesi

Optimizasyonu

Öz

Polimerler kimyasal yapısı dolayısıyla nem içermektedir. Polimerlerde bulunan

nem son ürünün kalitesi ve proses kolaylığı açısından önem arz etmektedir. Bu

sebeple polimerler enjeksiyon, ekstrüzyon gibi proseslerden önce kurutma

işlemine tabii tutulurlar. Kurutma işlemi polimer tedarikçileri tarafından belirtilen

sıcaklık ve sürelerde gerçekleştirilir. Fazla kurutma viskozite artışına (proses etme

zorluğuna), az kurutma ise akış izleri, çapak, çekme dayanımı ve darbe dayanımı

düşüşüne yol açmaktadır. Bunlara ek olarak, fazla kurutma işlemi, fazla enerji

tüketimine sebebiyet vermektedir. Bu çalışmada, Akrilonitril Bütadien Stiren

(ABS) polimerinin kurutma proses optimizasyonu üzerine çalışma

gerçekleştirilmiştir. Veri toplama bölümünde ilk kısım olarak Deney Tasarımı

(DoE) yaklaşımıyla farklı senaryolar belirlenmiştir. Bu senaryolar için, ABS

polimer üreticileri tarafından bildirilen kurutma zamanı ve sıcaklık değerleri

dizayn parametersi olarak seçilmiştir. ABS granüller farklı sıcaklıklarda desikant

tipi kurutucu ile kurutma işlemine tabii tutulmuştur. Çıktılar için, belirli

periyotlarda numune alınmış, enerji analizatörü ve nem ölçüm cihazı ile

numunelerin ağırlıkça nemi ve enerji tüketimi tespit edilmiştir. İkinci bölümde,

sayısal işlemler için Wolfram Mathematica programı kullanılmıştır. Doğrusal

olmayan çoklu nonlineer nöro-regresyon modellemesi kullanılarak girdi ve çıktı

parameterleri arasındaki fenomeni tanımlamak için matematiksel modeller

oluşturulmuştur. Önerilen modellerin eğitim, test ve doğrulama aşamalarındaki

başarılarını test etmek için R2 model değerlendirme kriteri kullanılmıştır.

vi

Modellerin mühendislik sınırları kontrol edilmiş ve en iyi sonucu veren model

seçilmiştir. Son olarak, farklı stokastik optimizasyon yöntemleri, Differential

Evolution, Nelder–Mead, Simulated Annealing ve Random Search, kullanılarak

sistem parametrelerinin optimizasyonu gerçekleştirilmiştir

Anahtar Kelimeler: ABS, kurutma prosesi, nöro-regresyon yaklaşımı, stokastik

optimizasyon, enerji tüketimi

vii

To my family…

viii

Acknowledgment

First and foremost, I would like to express my endless thanks to my academic

advisor Assoc. Prof. Dr. Levent Aydın, who has always supported me, who has

been working hard on me for about 8 years. He never withheld his knowledge

from me, rather he worked patiently to teach something more. I will always be

proud to work with him and to be his student.

I should state that I am grateful to my family who supported me in my nearly 20

years of education under all circumstances, who always stood behind me and who

did not spare their moral support.

Lastly, I am very thankful to my dear fiance Ece Orancı for her caring, support,

and motivation.

ix

Table of Contents

Declaration of Authorship .. ii

Abstract ... iii

Öz…………………………………………………………………………………... .. v

Acknowledgment .. viii

List of Figures .. xii

List of Tables... xiii

List of Abbreviations... xiv

List of Symbols .. xv

1. Introduction ... 1

1.1. Literature Survey ... 1

1.2. Objectives and Motivation .. 2

2. Mathematical Background... 4

2.1. Introduction ... 4

2.2. Design of Experiments (DOE) .. 4

2.2.1. Randomized Complete Block Design ... 5

2.2.2. Full Factorial Design ... 6

2.2.3. Fractional Factorial Design ... 6

2.2.4. Central Composite Design .. 7

2.2.5. Box-Behnken Design .. 7

x

2.2.6. Taguchi Design ... 7

2.2.7. Latin Hypercube Design ... 8

2.2.8. Optimal Design (D-Optimal) ... 8

2.3. Mathematical Modeling .. 9

2.3.1. Neuro Regression Approach .. 10

2.3.2. Nonlinear Regression Analysis ... 11

3. Optimization Process .. 13

3.1. Stochastic Optimization Methods ... 13

3.1.1. Introduction ... 13

3.1.2. Simulated Annealing .. 16

3.1.3. Differential Evolution ... 17

3.1.4. Nelder Mead .. 18

3.1.5. Random Search .. 19

3.2. Mathematica and Optimization ... 21

3.2.1. Global and Local Optimization by Mathematica 21

3.2.2. FindMinimum ... 23

3.2.3. NMinimize and NMaximize Functions ... 25

3.3.4. Random Search Solver .. 26

3.2.5. Simulated Annealing Solver ... 31

3.2.6. Nelder Mead Solver ... 36

4. Optimization of Drying Process of Plastic Granules 40

xi

4.1. Methods ... 40

4.1.1. NDSolver Solver .. 40

4.1.2. FindFit Solver .. 41

4.2. Engineering Model .. 42

4.2.1. Mathematical Model .. 43

4.3. Materials and Methods .. 49

4.4. Optimization Problem Definition .. 50

4.5. Optimization Scenarios ... 51

4.6. Result and Discussion ... 52

4.7. Conclusion ... 59

 References ... 60

Appendices .. 66

Appendix A Draft Design Chart ... 66

Appendix B Expanded Model Expressions of the

Case Studies – Energy Output .. 68

Appendix C Expanded Model Expressions of the

Case Studies – Moisture Output ... 73

Appendix D Results of the Neuro-regression models boundedness 78

Curriculum Vitae ... 80

xii

List of Figures

Figure 2.1 Flowchart illustrating the processes in an ideal design process 4

Figure 3.1 Flowchart of the simulated annealing algorithm 17

Figure 3.2 Flowchart of the differential evolution algorithm 18

Figure 3.3 Flowchart of the nelder–mead algorithm .. 19

Figure 3.4 Flowchart of the random search .. 20

Figure 3.5 Mathematica optimization process .. 23

Figure 3.6 3D plot of the function f(x1,x2) 24

Figure 3.7 Flowchart of the random search algorithm 28

Figure 3.8 3D plot of Ackley function in an interval... .. 28

Figure 3.9 “Holder Table 1” function's 3D plot... ... 30

Figure 3.10 Flowchart of the simulated annealing algorithm... 32

Figure 4.1 Illustrating of the polymer drying system... .. 42

Figure 4.2 Energy Analyzer Interface... ... 43

Figure 4.3 Environmental Values Measurement Sensor... 44

Figure 4.4 Shini Dew Point Sensor... 44

Figure 4.5 Environmental Values Measurement Sensor... 44

xiii

List of Tables

Table 3.1 Methods and instructions for optimization.. 22

Table 4.1 Design Variables ... 43

Table 4.2 Drying experiment parameters for 65°C ... 46

Table 4.3 Drying experiment parameters for 75°C ... 47

Table 4.4 Drying experiment parameters for 85°C ... 48

Table 4.5 Multiple regression model names, nomenclatures and formulas 49

Table 4.6 Objective Function .. 52

Table 4.7 Accuracy check results of obtained models for the Energy output in

terms of R2 values ... 53

Table 4.8 Accuracy check results of obtained models for the Moisture output in

terms of R2 values ... 55

Table 4.9 Optimization Problem Results .. 57

xiv

List of Abbreviations

ODE Ordinary Differential Equation

DE Differential Evolution

SA Simulated Annealing

NM Nelder–Mead

RS Random Search

FE Finite Element

LP Linear Programming

NLP Nonlinear Programming

KKT Karush–Kuhn–Tucker Conditions

xv

List of Symbols

E Energy [kWh]

C Temperature [centigrade]

t Time [min]

M Moisture [%]

k The Constant of Boltzmann

P(E) The Probability of Achieving the Energy Level

1

Chapter 1

1. Introduction

1.1. Literature Survey

Plastic injection molding is a widely used method for producing plastic products

[1]. It involves melting the material with the aid of a screw and an external

heating device, and then injecting it into a mold to form the desired product as the

mold cools [2]. Injection molding has been applied in various fields, from daily

necessities to aerospace components [3]. The process offers advantages such as

the reduction of density and elimination of sink marks, and mold designers are

using Finite Element Method (FEM) for optimization [4]. Different parameters,

such as injection pressure, holding pressure, and injection speed, can affect the

quality and dimensional stability of the plastic part. To ensure high-quality

products and reduce dependency on human expertise, artificial intelligence

approaches are being used to model the injection molding process [5].

Plastic injection molding processes involve several steps, including drying

treatment of plastic particles, melting the plastic, injecting the molten plastic into

a mold cavity, cooling and solidification, and separating the formed plastic

product from the mold [6].

Polymer drying can be achieved through various methods which one is first step

of these steps. One method involves using a polymer plastic drying device, which

includes a working cavity and a sliding support plate [7]. Another method

involves adjusting the viscosity of a polymer solution and spray-drying it to obtain

polymer powder with low water content [8]. Computer simulations have shown

that polymer-polymer mixtures stratify into layers during drying, with shorter

polymers enriched near the drying interface [9]. A non-drying polymer hydrogel

can also be produced by containing a deliquescent substance in a polymer

network, which prevents drying under atmospheric conditions [10]. Additionally,

2

a method for drying a polymer involves spraying a polymer-containing solution

into a gas and then removing the solvent by introducing the droplets into a second

solvent [11].

Polymer drying optimization is a continuing challenge in various industries.

Different methods and parameters have been explored to achieve optimal

conditions for polymer drying. Erfando et al. developed a genetic algorithm to

optimize parameters such as injection rate, injection time, and injection pressure

for polymer injection in oil recovery [12]. Tavcar et al. developed an optimization

algorithm for polymer gears, considering criteria such as stress, temperature,

wear, and cost [13]. Kurganov et al. proposed expressions to find optimal

conditions for hydrodynamic chromatography analysis of polymers [14]. Al

Momani and Örmeci investigated the use of an in-line UV-vis spectrophotometer

to optimize polymer dose during sludge dewatering [15]. Marchetti et al.

described a mathematical programming model for optimizing the balance of

feedstocks to manufacture multiple polymer grades [16]. These studies highlight

the importance of optimizing various parameters and criteria to achieve efficient

polymer drying processes.

1.2. Objectives and Motivation

The reasons for choosing this thesis study can be listed as follows;

• Moisture in polymers is important for the quality of the final product and

ease of processing.

• Polymers are subjected to drying before processes such as injection and

extrusion.

• Over-drying leads to increased viscosity (processing difficulty) while

under-drying leads to flow marks, burrs, and reduced tensile strength and

impact strength.

• Over-drying also causes excessive energy consumption. The aim of

engineering applications is to have the best mechanical properties and at

the same time to minimize the cost.

3

• As it is an integral part of optimization life, it is frequently used and must

be used in engineering applications in order to reduce the cost in the first

place.

The aims of this study can be listed as follows;

• To create a mathematical model of the drying process parameters and the

moisture content by weight of the ABS polymer,

• Reaching minimum energy consumption with optimum drying parameters,

• To investigate the effects of drying parameters on polymer moisture.

4

Chapter 2

2. Mathematical Background

2.1. Introduction

The background of the mathematical tools used throughout the thesis is

introduced in this chapter. The primary goal of this chapter is to use the

techniques employed in this study to briefly explain the procedures for design-

based optimization in engineering. The design of experiments, mathematical

modeling, and optimization techniques are discussed in this context. All of these

processes for an ideal design process are shown in Figure 2.1. Additionally, the

optimization techniques used in the Mathematica software, the instrument used to

carry out the mathematical procedures in this study, are mentioned.

Figure 2.1: Flowchart illustrating the processes in an ideal design process

2.2. Design of Experiments (DOE)

In manufacturing processes, experiments are conducted to increase our knowledge

and understanding of them. Hence, the correlations between the main factors of

the inputs and the output behaviors can be observed [17, 18]. One-Variable-At-a-

Time (OVAT) is one of the most common engineering techniques. The output

from these operations could be inaccurate and wasteful as a result of this strategy.

Furthermore, it is well recognized that not every parameter affects results equally.

Therefore, a complex design seeks to establish the degree to which process

5

parameters affect the result [17, 19, 20]. Design of experiment (DoE) is the best

course of action when a component's specific characteristic is influenced by a

number of different factors [17, 18, 21]. DoE is a useful method for identifying

new processes, getting a comprehensive understanding of current processes, and

improving their efficiency. By reducing time and cost, this method ensures great

efficiency and more reliable process results.

The choice of the best statistical tools is crucial since noise can significantly alter

the outcomes of data analysis. The three guiding concepts of statistical techniques

in DoE are replication, randomization, and blocking. In order to get more accurate

results and reduce experimental error, replication is based on repeating

experimental runs. The experiments are carried out in a random order according to

the randomization process. Blocking is used to stop the main effects of vagueness

and isolate known systematic bias impacts [17, 19]. The proper DoE approach is

determined by the objectives of the experiments and the number of elements to be

addressed. The remainder of this section lists and briefly describes some DoE

methods, including Randomized Complete Block Design, Full Factorial,

Fractional Factorial, Central Composite, Box-Behnken, Taguchi, Latin

Hypercube, and D-Optimal Design [19]. It should be noted that the techniques

presented here are not a complete list, as it is intended to inform readers about the

subject by presenting approaches commonly used in practice.

2.2.1. Randomized Complete Block Design

The distribution of treatment for experimental constituents is not subject to any

tight restrictions. However, there are instances where the data from studies

changes greatly in the real world. The design created in such circumstances is

known as a Randomized Complete Block Design (RCBD). The main goal of

blocking is to maximize variance between blocks while minimizing variation

between experimental units within a block.

6

Advantages

• It is possible to remove the treatments or replicates from the analysis.

• More frequently than others, some multiple treatments can be repeated.

• There are no strict limitations on the quantity of treatments or replicates.

• Despite the fact that the experimental error is not homogeneous, there can

be meaningful comparisons. [17, 22].

Disadvantages

• For a small number of treatments, the df error is less.

• If there are too many treatments and significant differences between

experimental units, a substantial error term may be acquired.

When data are lacking, RCBD performs poorly in terms of experimental

effectiveness.

2.2.2. Full Factorial Design

In industries like manufacturing, factororial designs with two or three levels are

typically acknowledged as the most frequently used DoE approach since they may

help generate reliable data on the effects of the variables. There are two types of

factorial designs: full and fractional. In a full factorial design, each factor setting

is combined with every other factor setting to identify the experimental runs. Full

factorial design involves a lot of runs and is not very useful if the concerned

response is influenced by five or more factors. The fractional factorial design may

be advantageous in such cases [17, 18].

2.2.3. Fractional Factorial Design

In practice, there is typically not enough time or funding to conduct tests using a

full factorial design. The main influences and two-order interactions can be

obtained by using a portion of the full factorial experiment, which cuts down on

the time and expense of the experiments in cases where some higher-order

correlations are not necessary. With a minimal number of workouts or

7

experimental runs, fractional factorial design, a type of orthogonal array layout,

enables researchers to examine the most crucial and necessary effects of

relationships [17, 18, 22, 23].

2.2.4. Central Composite Design

One of the most popular response surface designs, central composite design

(CCD), generates a factorial design and is carried out using five factorial levels.

One of the most significant benefits of CCD is the ability to check the corner

points. Therefore, if the curvature is negligible, the task is completed. On the other

hand, the main task is to create the star runs if the curvature is significant [21].

2.2.5. Box-Behnken Design

 A popular DoE method that works with three factorial levels is Box-Behnken

design. There are fewer runs as a result of this method's reliance on the midpoints

rather than the cube edge corner points. With the exception of CCD, all runs must

be completed in Box Behnken. Furthermore, it is superior in which cases the

curvature specified in the screening experiment is likely necessary [17].

2.2.6. Taguchi Design

Taguchi design is a statistical technique that significantly improves engineering

productivity. The primary objective of the Taguchi method is to keep output

fluctuation to a minimum, even in the presence of noise. Therefore, by taking into

account the noise causes and the error amount, this technique helps to ensure

product quality. Additionally, Taguchi design concentrates on enhancing the

fundamental purpose of the design process, allowing for the presentation of

flexible designs [17, 22].

 Advantages

• It is a versatile tool since it is simple to adapt to different engineering

problems.

8

• It improves the product quality, within some qualification constraints, by

considering a mean production feature value comparable to the final one

rather than just a value.

• It makes it possible to study the various variables without performing an

excessively high number of runs.

Disadvantages

• The obtained results are comparative and do not accurately identify which

parameter has the greatest influence on the desired attribute.

• Because orthogonal arrays only consider specific parameter combinations,

it cannot be utilized to determine how all variables interact.

• Parameter interactions are hard to be considered.

It is offline, which makes it inconvenient for processes involving dynamic

changes, such those seen in computer simulations.

2.2.7. Latin Hypercube Design

This approach uses a Multidimensional Distribution to generate a nearly random

sample of parameter values. Additionally, Latin Hypercube design is a

generalization of the Latin Square concept to an arbitrary number of dimensions.

The initial stage in this method is to decide how many sample points will be used,

along with which row and column each sample point was used for. Additionally,

whereas standard random sampling only yields a set of random numbers without

assurance, this approach guarantees a set of random numbers that accurately

reflect the fluctuation [17, 19].

2.2.8. Optimal Design (D-Optimal)

D-Optimal is a computer-aided design. It contains the best part of all possible

experiments. The final design might vary based on the tool used so software tools

may have diverse processes to create D-Optimal designs [17, 23]. Based on a

predefined factor and the number of runs, the selection technique produces the

9

optimal design. When conventional design methodologies are not used, the D-

optimal design approach is very useful. These cases are:

• When supplies of factor configurations are restrained.

• If the number of experimental runs must be reduced.

• When using the operation and mixing variables in the same design.

• When previously performed experiments must be comprised.

• In the event that the experimental area is unstable [17, 20, 21].

2.3. Mathematical Modeling

Mathematical modeling plays a key role in design-based engineering optimization

studies to obtain a robust objective function for the problem. Therefore, it's crucial

to use a suitable data modeling methodology in order to precisely define the

phenomenon under consideration. Researchers use many modeling techniques in

this way, including Artificial Neural Networks (ANN), Finite Difference

Technique (FDT), Response Surface Methodology (RSM), and Regression

Analysis. Nevertheless, studies preferred popular methods regarding engineering

optimization have some inadequate approaches, as follows:

(i) Updating one input while keeping the others constant is not a satisfying

explanation because it ignores the nonlinear effects of input variables. Therefore,

from the perspective of optimization, it is necessary to take into account the

interactions between all experimental and constructional parameters.

(ii) The most of data modeling methods involve using one or two traditional

regression models as the problem's objective function. In order to calculate how

closely the results of the fitted model match the experimental data, R2 values are

calculated. These values are used to assess the model's reliability. However,

achieving a high R2 value does not always mean a good fit for the engineering

systems. In addition, the model describes only the experimental results rather than

the fundamental behaviour of the phenomenon. So various regression model types

and approaches should be taken into consideration.

10

(iii) Another important point is the model function boundedness. Since all

engineering parameters are known to be finite, the function should be bounded in

order to accurately represent engineering systems. Hence, the proposed model

should be checked to determine whether it is limited to the parameter intervals of

the respective phenomenon.

(iv) Although it is vital to unveil the inherent behaviors of the stochastic search

processes, some studies on engineering systems optimization do not consider the

reliability, sensitivity, and robustness of the algorithms.

In order to overcome the abovementioned deficiencies of the most widely used

modeling and optimization approaches, it has been stated in the literature that it is

possible to perform realistic engineering design optimization studies [24, 25]. In

order to present a thorough view of the modeling-design-optimization processes, a

multiple nonlinear neuro-regression analysis is introduced with the simultaneous

use of four distinct direct search algorithms as part of the optimization process.

2.3.1. Neuro Regression Approach

The neuro-regression approach is a hybrid data modeling technique that improves

prediction accuracy by combining the advantages of regression analysis and

Artificial Neural Networks (ANN). This method begins by randomly splitting the

total amount of data into three sets that will be used for training, testing and

validation, respectively. By specifying the regression models and their

coefficients, the training step aims to reduce the error between the experimental

and predicted values. Accordingly, testing data are used to obtain the estimated

results by minimizing the effects of regression model inconsistencies, and this

step gives an understanding of the candidate models’ prediction capability. R2

values of the models are achieved in the training, testing and valdiation steps. A

boundedness check is performed on appropriate models in terms of R2 values as

the approach's final step. In this regard, the minimum and maximum values in the

specified interval for each design variable serve as the boundary of the candidate

models. This step is essential to determine whether the models are applicable to

the problem. As a result, it is expected that the selected models will satisfy each

required robustness criterion.

11

2.3.2. Nonlinear Regression Analysis

Nonlinear regression models are those that do not have linear parameters. They

can be used for three different purposes [26]:

• To test the validity of the model (or compare the hypothesis),

• To characterize the model (i.e., parameter prediction),

• To calculate the system's behavior (interpolation and calibration).

The general form of the nonlinear regression model is as follows:

𝑦 = (𝑥, 𝛽) + 𝜀 (2.1)

where x, β, and ε are vector of p predictors, a vector of k parameters, and an error

term, respectively. f(-) represents a known regression function.

Mathematical modeling procedures for nonlinear regression can be carried out

methodically following key characteristics as follows:

• Nonlinear regression allows more flexibility than linear regression because

the function does not need to be linear or linearizable. As a result,

nonlinear regression ensures different options to match the data.

• Nonlinear regression may be more applicable than transformations and

linear regression in situations when the f function can be linearized.

• Nonlinear regression necessitates a knowledge of the f function (e.g.,

polynomial, trigonometric, exponential), which requires a comprehensive

insight into the studied process. Although precise clarity is not necessary,

linear regression models are suitable for process forecasts where the

relationship between input and output parameters is approximately certain.

Mathematical terminology used in nonlinear regression models are the most

general so functionally generalized states cannot be written. However, the

following are some fundamental model types used in engineering fields as

examples of nonlinear equations:

 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 (2.2)

12

 𝑦 = 𝑎0 + 𝑎1𝑒𝑥 + 𝑎2𝑒𝑥2 + ⋯ + 𝑎𝑛𝑒𝑥𝑛 (2.3)

 𝑦 = 𝑎0 + 𝑎1 sin𝑥 + 𝑎2 sin𝑥2 + ⋯ + 𝑎𝑛 sin𝑥𝑛 (2.4)

 𝑦 =
 𝑎0+ 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛

𝑏0+ 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 (2.5)

Furthermore, a similar methodology can also be used to generate multivariable

states with various inputs from the aforementioned model types. Another

important point is that with a deeper understanding of mathematical functions,

special functions (such as Bessel, Laguerre, Lambert, and Gamma) as well as

various combinations of conventional functions can be selected.

13

Chapter 3

3. Optimization Process

3.1. Stochastic Optimization Methods

3.1.1. Introduction

One of the most common problem in applied mathematics is finding an

approximate optimal solution for a function defined on a subset of finite-

dimensional space. Some objective functions should be optimized in

combinatorial optimization problems, which are essential for the majority of

machine learning approaches, in order to approximate the optimal solution. For

these optimization problems, there were many numerical optimization techniques

available fifty years ago; the majority of them were deterministic (traditional

optimization techniques). Stochastic methods, which employ non-traditional

optimization techniques, have evolved into crucial tools for engineering, statistics,

science and business as a result of the development of computer technology.

These techniques are the most common due to certain properties that deterministic

algorithms do not have [27, 28]. For example, stochastic methods always include

probability, such as how much rain falls at random distribution in a reservoir, the

periodic prediction of the water level, or predicting the number of dropped

connections for a communications network using a constant bandwidth that is

randomly variable. As opposed to that, deterministic methods include probability

under no circumstances; and outcomes based on exact input values [29].

The process of minimizing or maximizing the value of a mathematical or

statistical function when one or more input parameters are subject to random

variables is known as stochastic optimization. The randomness may be noise in

measurements, Monte Carlo randomness in the search process, or both [27, 28].

Many industrial, biological, economic, and engineering problems can be

confirmed as stochastic systems, such as geography, communication area,

14

banking, signal processing, aerospace. In these systems, stochastic optimization is

appropriate for solving decision-making problems, and many researchers have

considered stochastic optimization methods in solving these problems. For

instance, Yan et al. [30] suggested a combined qualitative and quantitative

modeling specification based on a hierarchical model structure framework made

up of the high-level model, the meta-meta model, and the meta-model. According

to the findings of this study, the complex system could be completely described

using the suggested methodology. Li and Zhang [31] studied the problem of

stochastic linear-quadratic optimum control under final state inequality

constraints. In this study, the Karush-Kuhn-Tucker (KTT) theorem was proved

using hybrid constraints, then they obtained new types of Riccati equations. The

optimal linear state feedback control existence resulting from the KKT theorem is

provided by this equation. To solve the uncertain restricted stochastic linear

quadratic problem, a dynamic programming algorithm design was achieved. The

efficient global optimization method (EGO) was used by Aydn et al. [32] to

research the design of dimensionally stable laminated composites. The high

stiffness and low heat and moisture expansion coefficients optimization problem

for composite plates was resolved. The experimental proof is provided for the

optimization algorithm suggested in this study. Using Tsai-Hill, Hoffman, Tsai-

Wu, and Hashin-Rotem criteria, failure analysis of the optimized composites was

carried out after the design and optimization processes were finished. Zakaria et

al. [33] thoroughly examined generic stochastic optimization steps for

applications in renewable energy. The advantages and disadvantages of stochastic

optimization were also emphasized. Significant optimization methods belonging

to the stochastic optimization stages are emphasized.

The latest improvements and important stochastic optimization techniques were

presented by Niamsup and Rajchakit [34] in their study. For the social, economic,

and technical aspects of renewable energy systems, it is claimed that stochastic

optimization methods are more effective than deterministic optimization

techniques. Using the parameter-dependent Lyapunov-Krasovskii functional in

combination with techniques for linear matrix inequality, Niamsup and Rajchakit

examined polytopic discrete-time stochastic functions in the interval time-varying

15

delays and proposed new standards for the robust stability of the stochastic

system.

In order to manage a fleet of bikes over a number of bike stations, each with a

certain capacity and time-varying stochastic demand, Maggioni et al. [35] studied

this problem. The optimal number of bikes to assign to each station at the

beggining of the service is then determined using multi-stage and two-stage

stochastic optimization models for one-track bike-sharing systems with

transshipment. The solution supplied in the real system is compared to the

solutions obtained using the two-stage and multi-stage models to provide

managerial insights. In order to operate the hydrogen network of a petroleum

refinery as efficiently as possible, Gutierrez et al. [36] studied how to cope with

the difficulty of the indefinite scenario. The effect of raw network operating

modifications was examined using a two-stage stochastic optimization method.

Additionally, they were examined for viable stochastic and deterministic solutions

to the hydrogen network problem using data from real plants.

For the manufacturing of carbon fiber during the carbonization process, Khayyam

et al. [37] suggested a stochastic optimization model to reduce energy

consumption in a proper range of fundamental mechanical properties. A total of

fifty samples of fiber were analyzed for each set of processing operations, tensile

strength, and modulus. The five distribution functions were examined to find the

distribution functions that could most accurately describe the mechanical property

distribution of filaments while the energy usage on the processing equipment was

being tracked during the manufacturing of the samples. The Kolmogorov-Smirnov

test was also performed to confirm the correlation statistics and distribution

goodness of fit. The study demonstrated that, within the specified range, the

production quality could be predicted using stochastic optimization models, and

that this approach reduced the amount of energy used in the industrial process.

The thick epoxy/carbon fiber laminates were used to the stochastic multi-objective

cure optimization technique established by Tifkitsis et al. [38]. A surrogate model

was construct using the kriging approach, which replaces the Finite Element (FE)

simulation for computational effectiveness. A stochastic multi-objective

optimization framework based on Genetic Algorithms was constructed by

16

coupling and integrating the surrogate model and Monte Carlo. In comparison to

normal cure profiles, the results showed a considerable reduction of 40% in

temperature overshoot and curing time.

Stochastic optimization methods [27-30] include Simulated Annealing (SA),

Differential Evolution (DE), Nelder-Mead (NM), and Random Search (RS).

Researchers are constantly updating the literature with either new stochastic

approaches, improvements, or both. Some commonly used stochastic optimization

methods are briefly reviewed in the subsections that follow.

3.1.2. Simulated Annealing

Finding the global minimum of a function with a considerable number of

independent variables can be done relatively effectively using the simulated

annealing (SA) method, one of the most efficient and general stochastic

optimization algorithms. Additionally, the SA method makes a comparison

between the physical annealing process and determining the minimal function

value in mixed-integer, discrete, or continuous minimization problems. The

physical annealing procedure is referred to as a thermal process in condensed

matter physics because it produces low energy states of a material in a heat bath.

The fundamental idea behind the SA algorithm is to use random search in terms of

a Markov chain, which not only accepts changes that advance the objective

function but also retains some of the less-than-ideal changes.

The SA algorithm generates a new point at random after each iteration, and it ends

when any stopping conditions are satisfied (Figure 3.1). The Boltzmann

probability distribution with a scale based on temperature is used to determine the

distance between the new and current point or the scope of the search. Equation

3.1 gives the definition of the Boltzmann Probability Distribution [28, 39-41] as

 𝑃(𝐸) = 𝑒−𝐸/𝑘𝑇 (3.1)

where,

 𝑃(𝐸): The Probability of Achieving the Energy Level (𝐸),

17

𝑘: The Constant of Boltzmann,

𝑇: Temperature.

 Figure 3.1: Flowchart of the simulated annealing algorithm [39]

3.1.3. Differential Evolution

Storn and Price first introduced Differential Evolution (DE) as a search method in

1996 for solving optimization issues over continuous domains. Currently, DE is

among the most powerful real-parameter optimization algorithms. The four basic

stages of this algorithm are selection, crossover, mutation, and initialization.

Additionally, this algorithm has three real control parameters: (i)

differentiation/mutation constant, (ii) crossover constant, and (iii) population size.

The manipulation of the target and difference vectors to produce a trial vector is

essential for the differential evolution performance. The DE algorithm also uses

three control parameters: (i) the problem dimension, which scales the difficulty of

the optimization case; (ii) the maximum number of generations known as a

18

stopping condition; and (iii) boundary constraints [28, 41]. Figure 3.2 is a

flowchart that summarizes the operation of the DE algorithm.

Figure 3.2: Flowchart of the differential evolution algorithm [42]

Similar operators are used by the differential evolution algorithm, a population-

based algorithm like GA. The main difference between both algorithms is that GA

depends on crossover, a method of valuable and probabilistic information flow

across solutions to identify better solutions. DE, however, uses mutation operation

as its main search mechanism. This fundamental operation is based on the

variations between population pairs of solutions that were randomly sampled.

Despite the fact that this method is numerically inefficient, DE is strong and

effective enough to finding an optimum global value and avoid the local minimum

regardless of initial points. [43-45].

3.1.4. Nelder Mead

The Nelder-Mead (NM) algorithm is additionally referred to as Simplex Search in

the traditional literature on optimization. It is a traditional local search technique

that was originally designed for unrestricted optimization problems [46].

Although NM is not a global optimization approach, it frequently performs

admirably in the real world for problems with numerous local minima. Similar to

the DE algorithm, the adjustment of the NM options is controlled by four

fundamental parameters: reflection, expansion, contraction, and shrinkage. The

19

main characteristic of the NM algorithm is that the first few iterations produce

satisfactory results.

Additionally, it is required that one or two function evaluations only are notably

rare in practice for each iteration. The Simplex can change its orientation, size,

and shape to adapt to the local contour of the objective function, avoiding costly

or time-consuming evaluations of multiple functions. Furthermore, NM may

explore complicated search spaces with a great flexibility. The main steps of the

algorithm are shown in Figure 3.3.

Figure 3.3: Flowchart of the nelder–mead algorithm [47]

3.1.5. Random Search

The Monte Carlo Method, commonly known as the Random Search (RS)

algorithm, is founded on a stochastic methodology. It differs from deterministic

techniques like Branch-Bound and Interval Analysis due to the stochastic

20

character of the algorithm. The main advantages of RS are that (I) when a

multimodal function's absolute maximum is required, it should to be simple to

integrate with a true search process of some kind, (ii) it enables the global

optimum to be approached for non-convex, non-differentiable objective functions

with continuous and/or discontinuous domains, (iii) it is easy to apply for even the

most difficult optimization problems, (iv) the RS technique is relatively stable and

quickly offers fundamental information for unorganized global optimization

problems. The process used by the examined RS method in this work is given in

Figure 3.4. Furthermore, a thorough explanation of the Random Search approach

is provided in [48, 49].

Figure 3.4: Flowchart of the random search algorithm [49]

21

3.2. Mathematica and Optimization

3.2.1. Global and Local Optimization by Mathematica

There are several commands in the Mathematica software that solve linear-

nonlinear and unconstrained-constrained problems by exact-numeric optimization.

In this regard, while Minimize and Maximize are only acceptable for precise

global optimization, NMinimize and NMaximize are used in numerical global

optimization methods. The FindMinimum command is used to do numerical local

optimization. The commands mentioned above can be used to solve constrained-

unconstrained, linear and nonlinear optimization problems [50]. Table 3.1 and

Figure 3.5 provide comprehensive explanations of the instructions, techniques,

and categories of problems that are used to solve them.

For restricted nonlinear problems, there are two types of numerical global

optimization strategies: gradient-based and direct search. While Direct Search

methods have a probabilistic process and do not need derivative information,

Gradient-Based methods use the objective function's first or second derivatives as

well as constraints to calculate results.

Linear programming (LP) problems are those in which the objective function and

the constraints are linear functions of the optimization variables. Nonlinear

programming (NLP) is used for solving optimization problems when some

constraints or objective functions are nonlinear. For an objective function over

unknown real variables, maximum, minimum, or stationary points are computed

in the presence of congruent and noncongruent restrictions, collectively referred to

as constraints [50].

If a global optimization is required, all four methods—Minimize, Maximize,

NMinimize, and NMaximize—are applicable. Minimize and Maximize could find

a correct global optimum for the class of optimization problems that include

random multinomial issues. Using NMinimize or precisely with Minimize,

questions involving global optimization can be solved computationally.

Additionally, the method used can only be used in scenarios with a limited

number of variables due to their asymptotic complexity. FindMinimum is the

22

appropriate tool if the problem requires a local optimum or if it can be solved by

using just one or a few distinct points of departure. It simply tries to identify a

local minimum. For minor problems and local optimal solutions, NMinimize

could be useful. Only one of the four direct search methods—Nelder-Mead,

differential evolution, simulated annealing, and random search—is used by

NMinimize. To perfect the solving, a combination of the KKT solution, inner

point, and penalty technique is used. If efficiency is not a factor, NMinimize must

be more powerful than FindMinimum in addition to being a global optimal solver.

FindMinimum, on the other hand, may be used when the efficiency is important if

a local minimum is required, an excellent point of departure is required, the

scenario has just one lower point (for example, convex), or the situation is big-

budget. FindMinimum and NMinimize are used to solve a similar challenge with

seven parameters. It costs a lot of time and money to calculate restrictions [50].

The capabilities of the algorithms are assessed in this chapter for finding the

global minimum for various test functions using the Mathematica commands

FindMinimum, NMaximize, and Nminimize, RandomSearch,

SimulatedAnnealing, NelderMead, and DifferentialEvolution.

Table 3.1: Methods and instructions for optimization [50]

Optimization Types Optimization Methods/Algorithms
Mathematica

Commands

• Numerical Local

Optimization

• Linear Programming Methods

• Nonlinear Interior Point Algorithms

FindMinimum

FindMaximum

• Numerical Global

Optimization

• Linear Programming Methods

• Differential Evolution

• Nelder-Mead

• Simulated Annealing

• Random Search

NMinimize

NMaximize

• Exact Global

Optimization

• Linear Programming Methods,

• Cylindrical Algebraic Decomposition

• Lagrange Multipliers

• Integer Linear Programming

Minimize

Maximize

• Linear

Optimization

• Linear Programming Methods

(simplex, revised simplex, interior point)

LinearProgramming

23

Figure 3.5: Mathematica optimization process [50]

3.2.2. FindMinimum

The FindMinimum command is utilized to determine the global lower limit

function for unconstrained and constrained optimization problems [50].

MaxIterations, Method, PrecisionGoal, WorkingPrecision, and AccuracyGoal are

the options for the FindMinimum command.

The FindMinimum command chooses which method to use to solve problems,

according to the Method option. Here, we consider unconstrained optimization

problems: (i) Newton uses the exact Hessian or a finite difference approximation;

(ii) The quasi-Newton BFGS approximation, which was created by previous steps,

is used in Quasi-Newton, (iii) non-linear least-squares problems are solved using

the LevenbergMarquardt method, also known as the damped least-squares (DLS)

method, (iv) and linear systems are solved using the ConjugateGradient method,

(v) the PrincipalAxis method requires two starting conditions for each variable

and does not require derivatives. Only InteriorPoint can be chosen as a method for

constrained optimization problems.

24

The MaxIterations parameter determines how many iterations in total should be

used. The standard "MaxIterations->500" is used in restricted optimization

problems.

The options WorkingPrecision, PrecisionGoal, and AccuracyGoal determine the

number of digits of precision. While the latter verifies the outcome, the former

controls the internal calculations. WorkingPrecision->prec defaults to being equal

to MachinePrecision, but if prec is greater than MachinePrecision, a constant prec

value is used instead. The default settings are WorkingPrecision/3 and Infinity,

respectively, when AccuracyGoal and PrecisionGoal cases are specified as

Automatic [50].

The Carrom table function, a non-separable, multimodal function with numerous

local minima, has been used as a test function, and the effectiveness of the

FindMinimum command and its options in locating local minima is examined

[51].

In[1]:= f[x1_,x2_]:=-(Cos[x1]Cos[x2]
Exp[Abs[1-((x1^2+x2^2)^0.5)/Pi]])^2/30

In[2]:= Plot3D[f[x1,x2],{x1,-10,10},{x2,-10,10},
AxesLabel->{x1,x2,y}]

Figure 3.6: 3D plot of the function f(x1,x2)

25

In[3]:= FindMinimum[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2}]
Out[3]= {-24.1568,{x1->9.64617,x2->9.64617}}
In[4]:= FindMinimum[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},

{x1,x2},Method->“InteriorPoint”]
Out[4]= {-0.246302, {x1 -> -1.22418*10^-14,

x2 -> -1.29143*10^-14}}
In[5]:= Do[Print[FindMinimum[{f[x1,x2],-10≤x1≤10,

-10≤x2≤10},{x1,x2},Method->”InteriorPoint”,
“MaxIterations”->i]],
{i,{1,10,100,500,1000,2000,4000,8000}}]

 {-0.0105322,{x1->0.969586,x2->0.969586}}
{-0.246302,{x1->-8.74067*10^-8,x2->-8.74067*10^-8}}
{-0.246302,{x1->-8.37899*10^-15,x2->-8.38925*10^-15}}
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}}
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}}
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}}
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}}
{-0.246302,{x1->-1.22418*10^-14,x2->-1.29143*10^-14}}

 In[6]:=

Table[Print[FindMinimum[{f[x1,x2],-10≤x1≤10,
-10≤x2≤10},{{x1,RandomReal[{-10,10}]},
{x2,RandomReal[{-10,10}]}},Method->
“InteriorPoint”]],{10}]

 {-0.0368271,{x1->0.000019185,x2->-3.44978}}
{-1.42781,{x1->6.50458,x2->-6.50458}}
{-6.7549,{x1->9.68366,x2->-6.45799}}
{-0.272117,{x1->3.63079*10^-7,x2->-6.59135}}
{-1.42781,{x1->6.50458,x2->-6.50458}}
{-2.01069,{x1->-1.67999*10^-7,x2->9.73295}}
{-1.42781,{x1->-6.50458,x2->-6.50458}}
{-0.436543,{x1->6.56051,x2->3.28309}}
{-0.0843916,{x1->-3.36299,x2->3.36298}}
{-2.78243,{x1->-9.71802,x2->3.24199}}

3.2.3.NMinimize and NMaximize Functions

These Mathematica functions enable us to find the optimal solutions to complex

problems in science and engineering and their unique characteristics by using

search methods. They are efficient at finding global optimum solutions, but even

in the absence of boundary conditions and restrictions, it may be difficult to

achieve optimal results. Optimizing the given functions with various initial

conditions might be the best solution to this problem. The initial test functions are

used to get the following examples, which are the Ackley function of f (x1, x2)

and the Holder Table 1 function of g(x3, x4), respectively.

26

In[15]:= NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}]

Out[15]= {0.8740,{x1→-0.9984,x2→-2.9952}}

In[4]:= NMaximize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2}]

Out[4]= {12.3202,{x1→34.5137,x2→34.51377}}

In[7]:= NMinimize[{g[x3,x4],-10≤x3≤10,-10≤x4≤10},{x3,x4}]

Out[7]= {-26.9203,{x3→9.6461,x4→9.6461}}

In[8]:= NMaximize[{g[x3,x4],-10≤x3≤10,-10≤x4≤10},{x3,x4}]

Out[8]= {-2.5326×〖10〗^(-13),{x3→-4.7498,x4→-4.7123}}

Initial results suggest that the Ackley Function's global minima and maximal

values may be attained. It is obvious it was invalid for the Holder Table 1

function, nevertheless. It may be possible to obtain global values by changing the

restriction region or the parameter values.

Limitations may take the form of lists or logical combinations of options, as well

as equality and inequity within the domain. For example, if it is important to

define results as integers, add the z ∈ Integers to the line. This limitation makes

integers the only possible solutions. The NMinimize command additionally needs

a quadrilateral starting area to begin the optimum solution. Every parameter in the

given function needs to have an upper and lower boundary. As observed in earlier

chapters of this book utilizing the SA and RS algorithms, using the Method

selection allows us to construct various types of search methods and obtains

unautomated set outcomes. In this situation, it can be said that the

LinearProgramming method is the default option in the solving process if the

function being minimized or maximized (referred to as an objective function) and

constraints are linear. DE is the algorithm by default if the variables are integer

form and the central portion of the objective function are not numerical. NM

should be utilized as the search algorithm in other situations. NelderMead

switches with DE to acquire optimal values if it does not offer attractive solutions

[50].

 3.3.4. Random Search Solver

A stochastic technique is used in Mathematica's implementation of the Random

Search (RS) algorithm. The algorithm creates a population during operation,

27

including random starting points, and then uses the FindMinimum local search

method to assess the convergence behavior of the starting points to the local

lowest limit. During this process, the options: (i) SearchPoints determines the

number of starting points as per “min(10 f,100)” expression, where f is the

number of variables, (ii) RandomSeed adjusts the starting value for random

number producer, (iii) Method is defined by which method to use for minimizing

the objective function by FindMinimum. Here, for unconstrained optimization

problems, the FindMinimum command uses Quasi-Newton as a search method

which does not need the second derivatives (Hessians matrix) to be computed;

instead, the Hessian is updated by analyzing successive gradient vectors. In the

case of the constrained optimization problem, the nonlinear interior point is

selected as a search method by the FindMinimum command, (iv) PostProcess

option can be selected as Karush–Kuhn–Tucker (KKT) conditions or

FindMinimum. At the end of these processes, the best local minimum is selected

to be the solution.

The Random Search algorithm's options InitialPoints, Method, PenaltyFunction,

PostProcess, and SearchPoints are automatically controlled by Mathematica, and

appropriate values for these options are chosen in accordance with optimization

problems [50]. The RS algorithm operates according to the prcedures shown in

Figure 3.7.

Separable and non-separable multimodal test functions with more than one, few,

or many local minima are used to test the Random Search algorithm's

effectiveness in locating the global minimum. When an algorithm is not properly

designed, it can be inserted into the local minima without finding the global

minimums or not all global minimums, making this type of global optimization

problems quite difficult. In this regard, Ackley is the first chosen test function

with a global minima at f (0, 0) = 0 [51]. The definition of the Ackley function

and its 3D plot in an interval as seen Figure 3.7. are given in the Mathematica

syntax in the following commands.

In[1]:= f[x1_,x2_]:=-20Exp[(-0.02Sqrt[0.5(x1^2+x2^2)])]
-Exp[(0.5(Cos[2Pix1]+Cos[2Pix2]))]+20+Exp[1];

In[2]= Plot3D[f[x1,x2],{x1,-35,35},{x2,-35,35},
AxesLabel->{x1,x2,y}]

28

Figure 3.7: Flowchart of the random search algorithm [51]

Figure 3.8: 3D plot of Ackley function in an interval

It should be noted that if the RandomSearch command's arguments are left

unchanged, it might not be able to find a global minimum.

In[3]:= NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},
{x1,x2},Method->“RandomSearch”]

29

Out[3]= {2.83635, {x1->-5.99749,x2->8.99623}}

Sometimes changing the search point option that specifies the number of points to

start searches can be effective in finding a global minimum.

In[4]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},
{x1,x2},Method->{“RandomSearch”,“SearchPoints”->i}]],
{i,500,3000,500}]
{0.39531,{x1->0.996345,x2->0.996345}}
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}}
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}}
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}}
{0.280127,{x1->-5.04225*10^-24,x2->-0.9948}}
{1.2012*10^-9,{x1->-8.42728*10^-
10,x2->-4.16243*10^-9}}

The effect of the RandomSeed option, which establishes the random number

generator's starting value, can be investigated in the sections that follow. In the

previous situation, the value of "Searchpoints"->500 is insufficient to reach the

global minimum; however, in the following example, by setting the values of the

SearchPoints and the RandomSeed to 500 and 5, respectively, a global minimum

can be attained.

In[5]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},
{x1,x2},Method->{“RandomSearch”,“SearchPoints”-
>500,
“RandomSeed”->i}]],{i,5}]
{0.280127,{x1->-7.38323*10^-25,x2->0.9948}}
{7.40815*10^-10,{x1->6.89861*10^-10,
x2->-2.52669*10^-9}}

 {0.280127,{x1->5.59478*10^-24,x2->0.9948}}
{0.39531,{x1->0.996345,x2->0.996345}}
{1.37499*10^-9,{x1->-3.64123*10^-9,
x2->-3.22083*10^-9}}

In this case, a matrix's points are created and used as starting points. It is simpler

for getting at the answer if a beginning point is assigned and the problem's

approximate solution range may be estimated.

30

In[6]:= Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},
{x1,x2},Method->{“RandomSearch”,“InitialPoints”-
>Flatten[Table[{i,j},{i,-35,35,5},{j,-35,35,5}],1]}]]

Out[6]= {-4.44089*10^-16,{x1->-1.52703*10^-15, x2->-
1.52703*10^-15}}

PostProcess option is not of primary importance for this problem. PostProcess

methods KKT and FindMinimum give the same results.

In[7]:= Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},
{x1,x2},Method->{“RandomSearch”, “SearchPoints”->3000,
“PostProcess”->KKT}]]

Out[7]= {1.2012*10^-9,{x1->-8.42726*10^-10,
x2->-4.16243*10^-9}}

In[8]:= Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},
{x1,x2},Method->{“RandomSearch”, “SearchPoints”->3000,
“PostProcess”->FindMinimum}]]

Out[8]= {1.2012*10^-9,{x1->-8.42728*10^-10,
x2->-4.16243*10^-9}}

Another test function, Holder Table 1, which is separable and multimodal, is used

to evaluate the capability of the RandomSearch command in finding the global

minimum. This test function has global minima located at f (±9.646168,

±9.6461680) = – 26.920336. The definition of the "Holder Table 1" function and

associated 3D display are given in the Mathematica syntax shown below.

In[9]:= f[x1_,x2_]:=-Abs[Cos[x1]Cos[x2]Exp
[Abs[1-((x1^2+x2^2)^0.5)/Pi]]];

In[10]:= Plot3D[f[x1,x2],{x1,-10,10},{x2,-10,10}]

Figure 3.9: “Holder Table 1” function's 3D plot.

31

Without changing any of its options for this problem, the RS algorithm finds

one of the global minima.

In[11]:= NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},
{x1,x2},Method->“RandomSearch”]

Out[11]= {-26.9203, {x1 -> -9.64617, x2 -> -9.64617}}
In[12]:= Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},

{x1,x2},Method->{“RandomSearch”, “RandomSeed”->i}]],
{i,{1,6,7}}]
{-26.9203,{x1->-9.64617,x2->9.64617}}
{-26.9203,{x1->-9.64617,x2->-9.64617}}
{-26.9203,{x1->9.64617,x2->9.64617}}

3.2.5. Simulated Annealing Solver

The Simulated Annealing (SA) algorihm, which Mathematica has implemented, is

a stochastic approach that bases its operation on the solids' physical annealing

process. The SA's purpose is to determine the largest or smallest values of

functions with numerous variables as well as the smallest values of nonlinear

functions with numerous local minimums. Simulated annealing is the name of the

algorithm because it represents the ideal arrangement of atoms in solid bodies and

the minimizing of potential energy during cooling. The algorithm gives the system

the ability to stray from the local minimum, investigate, and find a better global

minimum [52].

For each iteration, the startup solution "Z" is first produced, followed by the

generation of " Znew " close to the current point, "Z" and finally the definition of "

Zbest".

If f(Znew) ≤ f(Zbest), Znew replaces Zbest and Z. Otherwise, Znew replaces with Z. In

this loop, the initial guess, as well as its number and starting value, may be found

using the variables InitialPoints, SearchPoints, and RandomSeed. Based on the

Boltzmann probability distribution (𝑘, ∆𝑓, 𝑓0), random movements in the search

space are carried out via the SA algorithm. In the equation, D stands for the

function that the Boltzmann Exponent explanation for, k for the current iteration,

and ∆𝑓 for the variance of the objective function. In the Mathematica, if the user

does not select manually, B is defined as
−∆flog(k+1)

10
 by BoltzmannExponent.

32

The working process described above is returned for all starting points once the

algorithm either converges to a spot or stays at the same position due to the

number of iterations specified by the LevelIterations parameter [53]. Following

the steps shown in Figure 3.10, the SA algorithm operates.

The performance capability of the SimulatedAnnealing command to determine the

global minimum is assessed using "Ackley" and "Holder Table 1".

In[1]:= f[x1_,x2_]:=-20 Exp[(-0.02 Sqrt[0.5 (x1^2+x2^2)])]-

Exp[(0.5 (Cos[2 Pi x1]+Cos[2 Pi x2]))]+20+Exp[1];
In[2]= Plot3D[f[x1,x2],{x1,-35,35},{x2,-35,35},

AxesLabel->{x1,x2,y}]

Figure 3.10: Flowchart of the simulated annealing algorithm [54]

33

By using the default value of its options, the SA algorithm might fail to locate a

global minimum.

In[3]:= NMinimize[{f[x1,x2], -35≤x1≤35,-35≤x2≤35},

{x1,x2},Method->{“SimulatedAnnealing”}]
Out[3]= {2.37578, {x1 -> 7.99584, x2 -> 3.99792}}

The BoltzmannExponent is an important tool that shows how to get to at a global

minimum because it includes a function that determines a new point with each

iteration. If this function is used without specifying a default value, the result can

be altered. The global lower limit has not been able to be determined in the

following problem, despite changing this option alone.

In[4]:= NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2},
Method->{“SimulatedAnnealing”, “BoltzmannExponent”
->Function[{i,df,f0},-df/(Exp[i/10])]}]

Out[4]= {0.830095, {x1 -> -2.99495, x2 -> 6.41153*10^-9}}

34

Although the PerturbationScale affects the result for this problem, changing this

option by itself has not been sufficient to determine the global minimum. Local

minimum points are attained by the algorithm.

In[5]:= Do[Print[NMinimize[{f[x1, x2], -35 ≤ x1 ≤ 35, -35 ≤ x2
≤ 35}, {x1, x2}, Method -> {“SimulatedAnnealing”,
“PerturbationScale” -> i}]], {i, 15}]

 {2.37578,{x1->7.99584,x2->3.99792}}
{2.40345,{x1->0.999488,x2->8.99539}}
{1.0993,{x1->-1.04986*10^-9,x2->3.99502}}
{3.8527,{x1->-1.99944,x2->14.9958}}
{6.15308,{x1->-23.9966,x2->-9.9986}}
{4.50046,{x1->14.9966,x2->-9.99773}}
{4.26698,{x1->11.9971,x2->-11.9971}}
{4.27353,{x1->7.99805,x2->-14.9963}}
{2.63697,{x1->5.99725,x2->-7.99634}}
{6.15308,{x1->-23.9966,x2->-9.9986}}
{6.15308,{x1->-23.9966,x2->-9.9986}}
{6.15308,{x1->-23.9966,x2->-9.9986}}
{6.15308,{x1->-23.9966,x2->-9.9986}}
{6.15308,{x1->-23.9966,x2->-9.9986}}
{6.15308,{x1->-23.9966,x2->-9.9986}}

Using many more SearchPoints, a global minimum can be obtained.

In[6]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},

{x1,x2},Method-> {“SimulatedAnnealing”,
“SearchPoints”->i}]],{i,100,500,100}]

 {0.830095,{x1->-2.99495,x2->7.32049*10^-10}}
{0.62186,{x1->1.99543,x2->-0.997715}}
{0.280127,{x1->-1.64485*10^-9,x2->-0.9948}}
{0.280127,{x1->0.9948,x2->5.25186*10^-12}}
{1.937*10^-9,{x1->-2.31279*10^-9,x2->-6.44598*10^-9}}

As previously seen, while changing the search points alone is sufficient to

determine the global lower limit., in the case of conducting a search utilizing the

RandomSeed, PerturbationScale, and BoltzmannExponent, the algorithm seizes

the local minimums.

In[7]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,
-35≤x2≤35},{x1,x2},Method->
{“SimulatedAnnealing”,“RandomSeed”->i}]],{i,0,10}]

35

 {2.37578,{x1->7.99584,x2->3.99792}}
{0.557056,{x1->-4.99634*10^-9,x2->1.99487}}
{2.15456,{x1->7.99533,x2->-0.999416}}
{0.39531,{x1->0.996345,x2->0.996345}}
{3.46466,{x1->-8.99708,x2->9.99676}}
{0.993567,{x1->2.99583,x2->1.99722}}
{1.58244,{x1->-2.9975,x2->-4.99584}}
{1.22508,{x1->-3.99557,x2->1.99779}}
{1.46596,{x1->1.99819,x2->-4.99546}}
{0.39531,{x1->-0.996345,x2->0.996345}}
{2.29034,{x1->4.99729,x2->6.9962}}

In[8]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},
{x1,x2},Method-> {“SimulatedAnnealing”,
“PerturbationScale”->3,“SearchPoints”->500,
“RandomSeed”->i}]], {i, 0, 10, 1}]

 {-4.44089*10^-16,{x1->-1.62365*10^-15,
x2->2.19073*10^-16}}
{0.39531,{x1->-0.996345,x2->0.996345}}
{0.557056,{x1->1.99487,x2->-1.44602*10^-11}}
{1.16405,{x1->-2.99649,x2->-2.99649}}
{0.557056,{x1->-1.99487,x2->-6.2523*10^-11}}
{0.62186,{x1->-1.99543,x2->-0.997715}}
{0.557056,{x1->1.99487,x2->7.97744*10^-12}}
{0.39531,{x1->0.996345,x2->0.996345}}
{0.280127,{x1->0.9948,x2->-6.58993*10^-9}}
{2.09443*10^-9,{x1->-7.39447*10^-9,
x2->-3.93044*10^-10}}
{0.993567,{x1->-1.99722,x2->-2.99583}}

Clear[f]
In[9]:= f[x1_,x2_]:=-Abs[Cos[x1]Cos[x2]
Exp[Abs[1-((x1^2+x2^2)^0.5)/Pi]]];
In[10]:= Plot3D[f[x1,x2],{x1,-10,10},{x2,-10,10}]

36

Without changing any of its options for this problem, the Simulated Annealing

algorithm finds one of the global minimum points.

In[11]:= NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2},
Method->“SimulatedAnnealing”]

Out[11]= {-26.9203, {x1 -> 9.64617, x2 -> 9.64617}}

The Simulated Annealing algorithm, comparing to the Random Search algorithm,

finds four distinct global minimum points.

In[12]:= Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,
-10≤x2≤10},{x1,x2},Method->
{“SimulatedAnnealing”,“RandomSeed”->i}]],
{i,{1,2,3,11}}]

 {-26.9203,{x1->9.64617,x2->9.64617}}
{-26.9203,{x1->-9.64617,x2->-9.64617}}
{-26.9203,{x1->-9.64617,x2->9.64617}}
{-26.9203,{x1->9.64617,x2->-9.64617}}

3.2.6. Nelder Mead Solver

Nelder-Mead (NM) or Simplex is one of the derivative-free optimization methods

among other traditional local search algorithms. It was first developed for

challenges involving unconstrained optimization [55]. This method maintains a

set of m+ 1 points that create the vertices of a polytope in m-dimensional space

given a function of m variables. It should be highlighted that the simplex method

for linear programming should not be confused with this. Iterations have been

performed by forming 𝑚+ 1 points as 𝑦1, 𝑦2, 𝑦3,…, 𝑦m+1. These points form the

functions are ordered as h(y1) ≤ h(y2) ≤ h(y3) ≤ …h(ym+1). Once the new point is

created, it will replace the old worst point, ym+1. The centroid of a polytope serves

as a definition 𝑐 = ∑ yi𝑚
𝑖=1 , being the average position of all the points of an

object. Here, a trial point should be defined (yt). It is produced by reflecting the

worst point until centroid, yt = c+𝖺(c – y m + 1) where 𝖺 is a variable being larger

than 0. The new point in this section does not necessarily have to be a new worst

or best point. Hence, h(y1) ≤ h(yt) ≤ h(ym), yt replace with ym+1. When a new point

is obtained and is higher than the previous highest point, reflection has been

37

successfully attained.

It can also be continued with 𝑦e = 𝑐+ (𝑦t — 𝑟), where 𝛽 is a parameter to largen

the polytope and is greater than 1. The expansion process is complete if ℎ(𝑦e) is

found to be less than ℎ(𝑦t). As a result, ye changes with y m + 1. Otherwise, yt

changes to y m + 1 in the alternative. Another certain step for the algorithm

process is that if the fresh point yt underperforms to the second-lowest point,

ℎ(𝑦m) ≤ ℎ(𝑦m), the polytope is thought as very large and it is required to be

constricted [56].

Hence, a fresh test point is obtained using the following expressions [56].

 (3.2)

where γ is a parameter with values ranging from 0 to 1. If contraction is attained,

ℎ(𝑦c) is smaller than Min[ℎ(𝑦m+1), ℎ(𝑦t)]. On the other hand, stronger contraction

needs more work.

Similar to other algorithms, Nelder-Mead has specific flexible options like

ContractRatio, ExpandRatio, InitialPoints, PenaltyFunction, PostProcess,

RandomSeed, ReflectRatio, ShrinkRatio, and Tolerance. This algorithm works

effectively for problems with less local minima, while not having the complete

specifications that a reliable global optimization method should require. As with

previous algorithms, Nelder-Mead is utilized to obtain the optimum global values

for the Ackley and Holder Table 1 test functions [50].

In[5]:= NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},{x1,x2},
Method->“NelderMead”]

Out[5]= {0.87404, {x1 -> -0.998405, x2 -> -2.99522}}

As can be observed, DE outperforms the first trial's results while providing better

global optima for the Ackley function with the default set than Random Search

and Simulated Annealing.

RandomSeed, which is referred to as one of the critical adjustment parameters of

NM might directly affect the performance of the NM finding global minima.

38

In[6]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},
{x1,x2},Method->{“NelderMead”,
“RandomSeed”->i}]],{i,5}]

Out[6]= {0.557056,{x1->8.15872*10^-25,x2->-1.99487}}
{0.280127,{x1->0.9948,x2->-6.32493*10^-9}}
{7.12481,{x1->-20.9977,x2->-22.9975}}
{2.32486*10^-10,{x1->4.63269*10^-10,
x2->-6.78982*10^-10}}
{1.3908,{x1->-4.99519,x2->-0.999038}}

A better minimum value of 2.32486x10-10 was obtained by adjusting the

RandomSeed parameters as opposed to a trial performed the default settings.

Other possible useful adjustment factors in this algorithm are known as

ShrinkRatio, ContractRatio, and ReflectRatio. The following, however, shows

that it did not achieve a global minima in the Ackley function.

In[7]:= Do[Print[NMinimize[{f[x1,x2],-35≤x1≤35,-35≤x2≤35},
{x1,x2},Method->{“NelderMead”, “ShrinkRatio”->0.95,
“ContractRatio”->0.95,“ReflectRatio”->2,
“RandomSeed”->i}]],{i,5}]

Out[7]= {0.39531,{x1->-0.996345,x2->-0.996345}}
{0.783523,{x1->-1.99642,x2->1.99642}}
{7.37952,{x1->-5.99939,x2->-31.9967}}
{0.39531,{x1->-0.996345,x2->0.996345}}
{2.40704*10^-9,{x1->-2.92841*10^-9,
x2->-7.99045*10^-9}}

Using the NMinimize command, Holder Table 1—another test function—was

minimized. The global minima with default values was, as can be seen below, -

26.9203.

In[12]:= NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},{x1,x2},-
Method->“NelderMead”]

Out[12]= {-26.9203, {x1 -> 9.64617, x2 -> 9.64617}}

First, RandomSeed has been adjusted to identify global minima, as it was for the

preceding test function.

In[13]:= Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},
{x1,x2},Method->{“NelderMead”,
“RandomSeed”->i}]],{i,5}]

39

Out[13]= {-26.9203,{x1->-9.64617,x2->-9.64617}}
{-9.13635,{x1->3.24199,x2->-9.71802}}
{-26.9203,{x1->9.64617,x2->-9.64617}}
{-7.76664,{x1->2.08542*10^-8,x2->9.73295}}
{-7.76664,{x1->-7.64705*10^-9,x2->-9.73295}}

The results of this testing demonstrated that RandomSeed's adjustment like that

was insufficient to achieve the minimum value. Finally, additional potentially

helpful parameters related to the literature for NelderMead were changed to get

global minima.

In[14]:= Do[Print[NMinimize[{f[x1,x2],-10≤x1≤10,-10≤x2≤10},
{x1,x2},Method->{“NelderMead”, “ShrinkRatio”->0.95,
“ContractRatio”->0.95,“ReflectRatio”->2,
“RandomSeed”->i}]],{i,5}]

Out[14]= {-26.9203,{x1->-9.64617,x2->-9.64617}}
{-26.9203,{x1->-9.64617,x2->-9.64617}}
{-26.9203,{x1->-9.64617,x2->-9.64617}}
{-26.9203,{x1->-9.64617,x2->-9.64617}}
{-26.9203,{x1->-9.64617,x2->-9.64617}}

This example showed that none of the parameters could guarantee that a global

minimum is different from the result obtained with the using default settings.

40

Chapter 4

4. Optimization of Drying Process

of Plastic Granules

4.1. Methods

4.1.1. NDSolver Solver

The NDSolve command in the Mathematica software can be used to numerically

solve ODEs and PDEs. Instead of having to write a function, it provides

InterpolatingFunction, a suitable interpolation function. The Dirichlet Condition

(a type of boundary condition for a partial differential equation that gives the

prescribed value of the function on a surface) and Neumann Condition (a type of

boundary condition for a partial differential equation that gives the first derivative

on a surface) can also be used to specify boundary values. The command may

solve some of the differential-algebraic equation types that either contain

algebraic equations, differential equations, or both of them in one equation. For

the NDSolve solution, the iteration procedure is appropriate. A specific prescribed

value is taken into account in the iteration's initial step. Second, the starting point

for the next iteration is the output of the previous one. Finally, a series of outputs

up to the endpoint are produced by this repeated process. To define the maximum

number of steps of the iteration process, we can use the “MaxSteps” option by

selecting Automatic mode. Additionally, the terms StartingStepSize,

MaxStepSize, and NormFunction are used to describe, respectively, the size of the

step at the beginning, the maximum size of step in the independent variable of the

equation, and the norm of error estimation. Mathematica uses 10,000 as a

stopping criterion if the process's maximum number of iterations is not provided.

Given that error estimations have an impact on tolerances. By satisfying the

following requirement, they can be scaled by combining the mistakes for different

terms.

41

 (4.1)

where the function f represents the norm function that computing norms of error

estimate in NDSolve solver, 𝑒𝑟𝑟𝑜𝑟i is the 𝑖th component of the 𝑒𝑟𝑟𝑜𝑟 and 𝑥i is the

𝑖th component of the current solution, n is the number of components. Tolerancea

and tolerancer, respectively, stand for absolute and relative tolerances. An

improved version of the explicit Runge-Kutta, which is also an adaptive

embedded pair of orders, is used in the approach to try to get an appropriate step

size using an embedded error estimator.

The user has control over the NDSolve command's TimeIntegration,

BoundaryValues, and EquationSimplification options. These options correspond

to DE systems, ODE boundary value problems (BVPs), and simplified equations,

depending on the type of DE. By adjusting the time integration parameters, the

explicit Runge-Kutta method is also hybridized with the Adams, BDF,

ExplicitRungeKutta, ImplicitRungeKutta, and Symplectic-PartitionedRungeKutta

approaches. The method starts with a trial step at the midpoint for the domain, and

this leads to reducing lower- order error terms [57].

4.1.2. FindFit Solver

This solver is used to numerically derive the best-fit function to the prescribed

data. The method options include "ConjugateGradient", "Gradient",

"LevenbergMarquardt", "Newton", "NMinimize", and "QuasiNewton" and can be

chosen based on what is given problem. The Levenberg-Marquardt method is

chosen as an appropriate process to compute the regression coefficients in the

given problem, which is also a sub-problem of the least-square approximation. It

is a method for minimizing a sum-of-squares objective function. Equation 5.2,

which relates a version of Gauss-Newton and Gradient Descent updates for the

specified parameters, is valid for this method.

 [𝐽T𝑊𝐽 + 𝜆𝐼]ℎ = 𝐽T(𝑦— ŷ) (4.2)

The Jacobian, traditional Jacobian, and diagonal weighting matrix, respectively,

42

are represented in this equation by , 𝐽T, 𝐽, 𝑊. 𝜆 stands for the damping parameter,

which can be changed to be either large or small. ŷ stands for the fitted function, I

stands for the identity matrix, ℎ is the perturbation, and 𝑦 is a set of measured

points [58].

4.2. Engineering Model

Components of a typical polymer drying system are (1) main silo, (2) process

blower, (3) process filter, (4) process heater, (5) desiccant wheel, (6) regeneration

heater, (7) regeneration blower and (8) regeneration filter, as shown in Figure 4.1.

In addition to this, parameters of a typical drying system of polymers are

temperature, drying time. These two parameters can be changed manually by the

user. In addition, environmental factors also affect drying system (ambient

temperature, ambient humidity, dew point of air).

Figure 4.1: Illustrating of the polymer drying system

43

4.2.1. Mathematical Model

Table 4.1: Design Variables

Objective Function Design Variables Constraints

Energy (kW/hr) E

(MIN)

Drying Temperature (°C) C

Drying Time (Minute) t

Moisture (M) < (%0.02)

This study was prepared using the experimental data given in Table 4.2-4.3-4.4.

Experimental data were taken with the energy analyzer integrated into the drying

machine , as shown in Figure 4.2., the sensor measuring environmental

temperature, pressure and moisture, as shown in Figure 4.3., the sensor mounted

on the dryer machine shows the dryness level of the hot air entering the dryer

machine, as shown in Figure 4.4.. and the moisture content of the sample granules

taken from the dryer machine was measured with an instant moisture meter, as

shown in Figure 4.5.

Figure 4.2: Energy Analyzer Interface

44

Figure 4.3: Environmental Values Measurement Sensor

Figure 4.4: Shini Dew Point Sensor

Figure 4.5: Sartorius MA45 Moisture Analyzer

45

Sample granules were taken from the dryer machine at certain periods and their

humidity was recorded. These trials were conducted in accordance with the table

obtained from the DoE study, the table is given in Appendix A. According to

literature research, the drying process of previous studies is not sufficient in terms

of sensitivity and reliability. The drying process parameters have been modeled

using a different approach to produce more precise results by introducing a new

approach to the drying process. In this approach, the experimental data were used

and modeled and optimized with neuro regression analysis. The existing data was

divided into three groups (training, testing, validation) and many mathematical

models (linear, logarithmic, rational, hybrid, etc.) were created. As a second step,

the engineering limits of the candidate models were checked to produce realistic

values. Finally, the results were evaluated using different stochastic optimization

algorithms (Differential Evaluation, Nelder-Mead, Random Search and Simulated

Annealing algorithms).

46

47

48

49

4.3. Materials and Methods

Table 4.5: Multiple regression model names, nomenclatures and formulas

Model Name

Nomenclature

Formula

Multiple linear

L

Multiple linear rational

LR

Second order multiple
nonlinear

SON

Second order multiple

nonlinear rational

SONR

Third order multiple
nonlinear

TON

First order

trigonometric
multiple nonlinear

FOTN

First order
trigonometric multiple

nonlinear
rational

FOTNR

Second order

trigonometric multiple
nonlinear

SOTN

Second order

trigonometricmultiple
nonlinear

rational

SOTNR

First order
logarithmic

multiple nonlinear

FOLN

First order

logarithmic multiple
nonlinear

rational

FOLNR

Second order

logarithmic multiple
nonlinear

SOLN

Second order

logarithmic multiple
nonlinear rational

SOLNR

50

During the modeling phase, neuro-regression analysis was used to test the

accuracy of the predictions. In this approach, all experimental data are randomly

divided into three. 80% of the experimental data is randomly allocated as training,

15% as testing and 5% as validation. These separated experimental data were

defined as input to the Wolfram Mathematica 12.0 program. The aim is to create a

mathematical model; is to obtain the best R² values from these models. As a first

step, R²training and R²trainingadjusted values are calculated from the mathematical

model. These two values are expected to be greater than 95% and close to each

other. The next step is to check the R²testing value to make sure that the

mathematical model gives more accurate results. The R²testing value is expected to

be greater than 85%. If the R²training and R²testing values are at the desired value, the

R²validation value is calculated as the next step. The R²validation value must also be

greater than 85%. If R²training, R²testing and R²validation values are not within the

desired ranges, go back to the beginning and change the mathematical model and

have these values calculated again in the new mathematical model. This cycle

continues until the desired R² values are reached. Table 4.5 shows all models

written for neuro-regression analysis of the problem.

4.4. Optimization Problem Definition

With the methods described, the optimum design of a drying process parameters

was made in the following steps.

• The parameters given in Table 4.2-4.4 were recorded as a result of the

experiments.

• Different functions were written mathematically with the experimental

data, and the best of these functions was determined by looking at R²training,

R²testing and R²validation values.

• Four different optimization scenarios were created by selecting the

functional structure that gave the best R² value. All of these scenarios were

solved with four different stochastic optimization algorithms.

51

4.5. Optimization Scenarios

Scenario 1: The objective function in this optimization problem is to minimize

the total energy used. In Scenario 1, it is assumed that all parameters can be real

numbers within certain ranges. Real experiment constraints are ignored. Under

these conditions; 65<drying temperature<85, 0<drying time<300, restrictions

were imposed and subjected to optimization algorithms. While determining the

lower and upper limits, the lower and upper limits given by the plastic granule

manufacturers were used as a reference and the decision was made taking into

account the production experience.

Scenario 2: The objective function in this optimization problem is to minimize

the total energy used. In Scenario 2, it is assumed that all parameters can be real

numbers within certain ranges. Real experiment constraints are ignored. Under

these conditions; 65<drying temperature<85, 90<drying time<300, restrictions

were imposed and subjected to optimization algorithms.

Scenario 3: The objective function in this optimization problem is to minimize

the total energy used. In Scenario 3, all parameters are assumed to be the same

range as in Scenario 2, but these parameters can be only integers. Actual

experimental constraints are ignored. Under these conditions; 65<drying

temperature<85, 90<drying time<300 were subjected to optimization algorithms

by imposing restrictions.

Scenario 4: By adhering to the real experiment parameters, real constraints have

been imposed on the optimization problem. In order to minimize the total energy

used, all parameters are real numbers in the previous scenario ranges, drying

temperature ∈ {65, 70, 75, 80, 85}; drying time ∈ {90, 100, 110, 120, 130, 140,

150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300}.

52

Table 4.6: Objective Function

 Problem No Objectives Constraints

Problem 1
Minimize

[E]

 65 < C < 85

 0 < t < 300

Problem 2
Minimize

[E]

 65 < C < 85

 90 < t < 300

Problem 3
Minimize

[E]

 65 < C < 85, C ∈ integers

 90 < t < 300, t ∈ integers

Problem 4
Minimize

[E]

 x1 == 65 || x1 == 70 || x1 == 75 || x1 ==

80 || x1 == 85||

|| x2 == 90 || x2 == 100 || x2 == 110 || x2

== 120 || x2 == 130 || x2 == 140 || x2 ==

150 || x2 == 160 ||

|| x2 == 170 || x2 == 180 || x2 == 190 ||

x2 == 200 || x2 == 210 || x2 == 220 || x2

== 230 || x2 == 240 ||

 x2 == 250 || x2 == 260 || x2 == 270 ||

x2 == 280 || x2 == 290 || x2 == 300

0.02≤ %M

In this study, in order to reduce the energy consumption of the drying system of

ABS polymers, four optimization problems have been defined. Our system inputs

are the set temperature and the waiting time of the polymers in the dryer, outputs

are the moisture content of the polymer by weight and the energy consumed by

the machine. The set temperature C, waiting time of the polymer in the dryer t are

considered design variables.

4.6. Result and Discussion

Regression analysis and artificial neural networks (ANN) are combined in a

hybrid method to assess the accuracy of the predictions made during the modeling

phase. This methodology uses three sets of data, each comprising 80%, 15%, and

5% of the total data. The first set is used for training, the second is used for

testing, and the third is used for validation. Reduction of the error between

experimental and predicted values is the aim of the training procedure, which

involves adjusting the regression models and coefficients given in Table 4.5 and

hybrid models. In this study, 40 different mathematical models with two inputs

(see Table 4.1) were tested and the results are given in Table 4.7-4.8.

While preparing Tables 4.7-4.8, R²training, R²testing and R²validation values were

calculated for each mathematical model. These values give information about the

53

success of the model and the values are expected to be 1 and/or close to 1. The

closer the result is to 1, the better the model is at predicting the structure. While

searching for the most successful model, the model that met the condition of being

closest to 1 in all three values was selected. Because many models have R²training

and R²testing values of 1 and/or close to 1 (see Table 4.7-4.8). The most successful

model that simultaneously met all requirements for two outputs was selected,

taking into account engineering boundedness. The model for energy output is the

(TOTN+4thON) model, which is a hybrid model created by combining the third

order trigonometric multiple nonlinear and fourth order multiple nonlinear

models. The (TOTN+4thON) model, which is a hybrid model created by

combining the third order trigonometric multiple nonlinear and fourth order

multiple nonlinear models, which is the same hybrid model, was selected for

moisture output.

Table 4.7: Accuracy check results of obtained models for the Energy output in terms

of R2 values

ENERGY

 R2
training R2

trainingAdjusted R2
testing R2

validation

1-L 0.995752 0.995462 0.975999 0.995508

2-LR 0.998029 0.997822 0.986149 0.999638

3-SON 0.998828 0.998657 0.99363 0.997295

4-SONR 0.993033 0.998805 0.995306 0.997645

5-TON 0.999005 0.992736 0.995782 0.997129

6-TONR 0.999467 0.999219 0.998505 0.994741

7-4thON 0.999087 0.998659 0.99634 0.997784

8-4thONR 0.999721 0.999468 0.999082 0.99933

9-5thON 0.999285 0.998708 0.996426 0.993878

10-5thONR 0.999737 0.99921 0.999258 0.999395

11-FOTN 0.996754 0.996185 0.985155 0.997248

12-FOTNR 0.848582 0.80532 0.479997 0.509306

54

13-SOTN 0.791458 0.727737 -1.87599 -0.335678

14-SOTNR 0.80726 0.703838 0.02351 0.22364

15-TOTN 0.794832 0.642855 -2.1913 -0.308922

16-TOTNR 0.863468 0.655939 0.369712 -0.0585805

17-FOLN 0.746591 0.729312 -0.211098 -0.0685417

18-FOLNR 0.758402 0.73297 -0.162213 0.0701223

19-SOLN 0.774711 0.741742 -0.937814 -0.250169

20-SOLNR 0.781802 0.730461 0.0468881 0.00867686

21-SOTNR+LR 0.8406 0.72859 0.173744 0.60184

22-TOTNR+LR 0.835299 0.68557 0.285233 0.0272367

23-SOLNR+LR 0.998958 0.998604 0.99551 0.997167

24-SOTN+TON 0.999047 0.998341 0.994322 0.9965

25-SOTNR+TONR 0.999502 0.998636 0.998897 0.998753

26-SOTN+4thON 0.99913 0.998142 0.994608 0.99708

27-SOTNR+4thONR 0.999662 0.998363 0.999158 0.99898

28-SOTN+5thON 0.999314 0.997985 0.994269 0.995269

29-SOTNR+5thONR 0.999888 0.992948 0.999762 0.999791

30-TOTN+TON 0.999128 0.997723 0.993669 0.996196

31-TOTNR+TONR 0.999777 0.997993 0.999437 0.99931

32-TOTN+4thON 0.999245 0.99727 0.993216 0.997641

33-TOTNR+4thONR 0.998306 1.03557 0.987386 0.999269

34-FOLNR+LR 0.998958 0.998761 0.99555 0.997203

35-FOLN+SON 0.998842 0.998604 0.993286 0.997337

36-FOLNR+SONR 0.999111 0.998808 0.995835 0.997911

37-FOLN+TON 0.999016 0.998679 0.995684 0.997119

38-FOLNR+TONR 0.999469 0.999143 0.998545 0.998775

39-FOLN+4thON 0.999095 0.998582 0.996288 0.997952

40-FOLNR+4thONR 0.999699 0.999346 0.999099 0.999032

55

Table 4.8: Accuracy check results of obtained models for the Moisture output in

terms of R2 values

MOISTURE

 R2
training R2

trainingAdjusted R2
testing R2

validation

1-L 0.741412 0.723781 0.572324 0.618364

2-LR 0.926342 0.918589 0.822627 0.913459

3-SON 0.906796 0.893157 0.769043 0.908181

4-SONR 0.968268 0.960801 0.867995 0.982048

5-TON 0.943542 0.928283 0.876827 0.964149

6-TONR 0.986797 0.980657 0.931553 0.969345

7-4thON 0.958956 0.939716 0.851102 0.936777

8-4thONR 0.99289 0.986426 0.961679 0.999417

9-5thON 0.968081 0.942299 0.765717 0.974122

10-5thONR 0.99641 0.98923 0.990973 0.99711

11-FOTN 0.744215 0.699453 0.5949 0.590206

12-FOTNR 0.948657 0.933987 0.900042 0.957616

13-SOTN 0.532853 0.390114 -1.78107 -0.419047

14-SOTNR 0.531586 0.280242 0.402331 -0.0627518

15-TOTN 0.557595 0.229888 -2.12602 -0.271768

16-TOTNR 0.668732 0.165205 0.427724 0.0633301

17-FOLN 0.45176 0.41438 -0.182404 -0.209413

18-FOLNR 0.442835 0.384186 -0.027849 -0.0927132

19-SOLN 0.511164 0.439627 -1.10111 -0.355042

20-SOLNR 0.705799 0.636575 0.928394 0.0727682

21-SOTNR+LR 0.97124 0.95103 0.963919 0.981696

22-TOTNR+LR 0.751001 0.524639 -0.062998 0.264564

23-SOLNR+LR 0.955135 0.939862 0.917185 0.957741

24-SOTN+TON 0.948819 0.910906 0.810242 0.964762

56

25-SOTNR+TONR 0.991354 0.976318 0.970072 0.983274

26-SOTN+4thON 0.963453 0.921921 0.79501 0.949241

27-SOTNR+4thONR 0.994375 0.972741 0.97261 0.999554

28-SOTN+5thON 0.971704 0.916882 0.716449 0.979891

29-SOTNR+5thONR 0.89408 -5.67299 0.734969 0.781832

30-TOTN+TON 0.95304 0.877381 0.670803 0.950888

31-TOTNR+TONR 0.997836 0.879784 0.705095 0.985742

32-TOTN+4thON 0.966749 0.980527 0.991747 0.999221

33-TOTNR+4thONR 0.971181 1.60521 0.904255 0.96511

34-FOLNR+LR 0.945914 0.935709 0.860263 0.934522

35-FOLN+SON 0.908597 0.889848 0.729506 0.90607

36-FOLNR+SONR 0.969627 0.959288 0.882462 0.979058

37-FOLN+TON 0.945775 0.927183 0.856345 0.962914

38-FOLNR+TONR 0.990337 0.984391 0.953053 0.993353

39-FOLN+4thON 0.961509 0.939697 0.82581 0.930651

40-FOLNR+4thONR 0.993198 0.985223 0.966119 0.99948

Constraints were applied to the selected model and the maximum and minimum

values given by different algorithms were recorded. Expanded model expressions

of energy output are given in Appendix B and expanded model expressions of

moisture output are given in Appendix C. The table containing the engineering

boundedness of all models is given in Appendix D.

57

Table 4.9: Optimization Problem Results

Scenario No Constraints
Optimization

Algorithm

Total Energy

(kWh)
Suggested Design

1
65 < C < 85

0 < t < 300

MDE 15.98 x1=67.60, x2=57.24

MRS 15.98 x1=67.60, x2=57.24

MNM 13.22 x1=73.80, x2=33.44

MSA 34.38 x1=65.22, x2=243.41

2
65 < C < 85

90 < t < 300

MDE 11.69 x1=68.13, x2=90.24

MRS 11.57 x1=65.74, x2=92.56

MNM 11.69 x1=68.13, x2=90.24

MSA 11.57 x1=65.74, x2=92.56

3

65 < C < 85,

C ∈ integers

90 < t < 300,

t ∈ integers

MDE 12.59 x1=69, x2=93

MRS 13.07 x1=66, x2=91

MNM 13.07 x1=66, x2=91

MSA 12.29 x1=66, x2=93

4

x1 == 65 || x1 == 70 || x1 == 75 ||

x1 == 80 || x1 == 85||

|| x2 == 90 || x2 == 100 || x2 ==

110 || x2 == 120 || x2 == 130 ||

x2 == 140 || x2 == 150 || x2 ==

160 ||

|| x2 == 170 || x2 == 180 || x2 ==

190 || x2 == 200 || x2 == 210 ||

x2 == 220 || x2 == 230 || x2 ==

240 ||

 x2 == 250 || x2 == 260 || x2 ==

270 || x2 == 280 || x2 == 290 ||

x2 == 300

0.02≤ %M

MDE 15.61 x1=75, x2=100

MRS 15.61 x1=75, x2=100

MNM 15.61 x1=75, x2=100

MSA 15.61 x1=75, x2=100

In the tables, x1 represents the drying temperature and x2 represents the drying

time.

When we examine the results of different scenarios created to bring the structure

closer to reality; For two input values in Scenario 1, the first input value was

defined within the machine value range, and the second input value was defined

between the maximum and minimum ranges. As a result: the minimum total

energy used was found to be 15.98 kWh. Recommended values are drying

temperature (C°)=67.60, drying time (t)=57.24 minutes. The recommended values

appear close to reality, but are not within practical limits.

58

In Scenario 2, realistic restrictions were imposed on the second input in order to

obtain more convergent values. The first input value was defined within the

machine value range, and the second input value was defined with reference to the

values given by the manufacturers. As a result: the minimum total energy used

was found to be 11.69 kWh. Recommended values are drying temperature

(C°)=68.13, drying time (t)=90.24 minutes. Recommended values appear close to

reality, but are not within practical limits.

In Scenario 3, the experiment was conducted by imposing all restrictions

appropriate to the experimental data. Values are restricted to be integers. As a

result: the minimum total energy used was found to be 12.59 kWh. Recommended

values are drying temperature (C°)=69, drying time (t)=93 minutes. The

recommended values seem close to reality, but it does not seem possible to apply

them to the machine as integers.

In Scenario 4, more successful results were obtained by imposing all restrictions

appropriate to the experimental data. Values are restricted to be integers. As a

result: the minimum total energy used was found to be 15.61 kWh. Recommended

values are drying temperature (C°)=75, drying time (t)=100 minutes. The

recommended values seem close to reality, but it does not seem possible to apply

them to the machine as integers.

The experimental data suggested in Table 4.9 have been tested experimentally.

First of all, the technical revision made for this study enabled the machine to enter

input as integers. Therefore, Scenario 3 values were used and the limitation of

entering numbers 5 and multiples in Scenario 4 was eliminated. With the

suggested model results, drying at 66 (°C) for 91 minutes, energy consumption; It

was recorded as 13.9 kWh.

59

4.7. Conclusion

This research was conducted to investigate the effect of drying process variables

of plastic granules. Tables 4.2-4.3-4.4 were measured and recorded as

experimental data. Experimental data consisting of two inputs and two outputs

were modeled mathematically and the success of the model was evaluated. Then,

the results of four stochastic optimization methods (Differential Evaluation,

Nelder-Mead, Random Seed, Simulated Annealing) of the selected successful

model were evaluated. It has been observed that the more experimental data taken

as reference or performed, the more successful the mathematical models are. Real

experiments were conducted with the results obtained. When drying standards for

0.02% moisture are used, energy consumption while drying for 240 minutes at 75

(°C) temperature; While it was 36.1 kWh, the energy consumption was dried at 66

(°C) for 91 minutes with the suggested model results; It was recorded as 13.9

kWh. Thus, 60% energy savings were achieved in the granule drying process in a

400kg silo.

60

References

Journal article with one author & doi:

[1] Fu, H., Xu, H., Liu, Y., Yang, Z., Kormakov, S., Wu, D., & Sun, J.

Overview of injection molding technology for processing polymers and

their composites. ES Materials & Manufacturing 2020, 8(4); 3-23. doi:

10.30919/esmm5f713

[2] Barbosa, R. C. N., R. D. S. G. Campilho, and F. J. G. Silva. Injection mold

design for a plastic component with blowing agent. Procedia

Manufacturing 17 2018; 774-782. doi: 10.1016/J.PROMFG.2018.10.128

[3] Stormonth‐Darling, J. M., Saeed, A., Reynolds, P. M., & Gadegaard, N.

Injection Molding Micro‐and Nanostructures in Thermoplastic

Elastomers. Macromolecular materials and engineering 2016, 301(8); 964-

971. doi: 10.1002/MAME.201600011

[4] Aditya, Chhabra., Karanbir, Singh., Himalaya, Kanwar. Effect of molding

parameter on injection molding. Scholarly Research Journal for Humanity

Science & English Language 4(24) 2017. doi:

10.21922/SRJHSEL.V4I24.10424

[5] Akyürek, A. , Keçe, A. , Aksoy, A. , Öztürk, N. Termoplastik Ürünlerin

Yeni Ürün Devreye Alma Sürecinde Bir Yapay Zeka Yaklaşımı. Uludağ

University Journal of The Faculty of Engineering 14 2009. doi:

10.17482/UUJFE.68249

[6] Wu, Jinbo., Wu, Yuzheng. 2016. Plastic injection molding process.

[7] Chen, Peijuan. 2020. Polymer plastic drying device.

[8] Sun, Xudong., Wang, Jianqiang., Wang, Jun., Zhang, Wenming. 2018.

Method for drying high K value polymer solution and polymer powder.

[9] Michael, P., Howard., Arash, Nikoubashman., Athanassios, Z.,

Panagiotopoulos. Stratification in Drying Polymer-Polymer and Colloid-

http://dx.doi.org/10.30919/esmm5f713

61

Polymer Mixtures.. Langmuir. 2017. doi:

10.1021/ACS.LANGMUIR.7B02074

[10] Kazutoshi, Haraguchi. Katsuhito, Kuroki. 2013. Non-drying polymer

hydrogel.

[11] Masakado, Akiro., Katagiri, Tomoaki. 2009. Method for drying polymer

and dried polymer.

[12] Tomi, Erfando. Optimization of Polymer Flooding Using Genetic

Algorithm. Journal of Earth Energy Science, Engineering, and Technology

2023. doi: 10.25105/jeeset.v6i1.16319

[13] Joze, Tavcar., Borut, Černe., Jože, Duhovnik., Damijan, Zorko. A

multicriteria function for polymer gear design optimization. Journal of

Computational Design and Engineering 2021. doi:

10.1093/JCDE/QWAA097

[14] A., A., Kurganov., A., A., Korolev., E., N., Viktorova. Optimization of

Conditions of Polymer Separation by Hydrodynamic Chromatography.

Polymer Science Series A 2020. doi: 10.1134/S0965545X20060061

[15] Fares, A., Al, Momani., Banu, Örmeci. Optimization of Polymer Dose

Based on Residual Polymer Concentration in Dewatering Supernatant.

Water Air and Soil Pollution 2014. doi: 10.1007/S11270-014-2154-Z

[16] Pablo, A., Marchetti., Ignacio, E., Grossmann., Wiley, Bucey., Rita,

Majewski. A Multiproduct Feedstock Optimization Model for Polymer

Production. Computer-aided chemical engineering 2013. doi:

10.1016/B978-0-444-63234-0.50098-1

[17] Antony J. Design of Experiments for Engineers and Scientists. 2nd ed.

Elsevier; 2014.

[18] Vecchio RD. Understanding Design of Experiments: a Primer for

Technologists. Hanser/Gardner Publications, Inc., Cincinnati; 1997.

62

[19] Cavazzuti M. Optimization Methods: from Theory to Design Scientific and

Technological Aspects in Mechanics. Springer Science & Business Media;

2012.

[20] Antony J. Some Key Things Industrial Engineers Should Know About

Experimental Design. Logistics Information Management; 1998.

[21] Montgomery DC, Runger GC, Hubele NF. Engineering Statistics. 5th ed.

John Wiley & Sons; 2009.

[22] Gunst RF, Mason RL. How to Construct Fractional Factorial Experiments.

ASQC Quality Press; 1991.

[23] Montgomery DC. Design and Analysis of Experiments. 8th ed. John Wiley

& Sons; 2017.

[24] Polatoğlu İ, Aydin L. A new design strategy with stochastic optimization on

the preparation of magnetite cross-linked tyrosinase aggregates (MCLTA).

Process Biochemistry 2020; 99: 131-8.

[25] Aydin L, Artem HS, Oterkus S. (Ed.) Designing Engineering Structures

using Stochastic Optimization Methods, 1st ed. CRC Press; 2020.

https://doi.org/10.1201/9780429289576

[26] Turhan, F. 1100 serisi alüminyum malzemelerde tig kaynağı ile oluşan

kaynak dikiş geometrisinin optimizasyonu (master's thesis). İzmir: İzmir

Katip Çelebi University Fen Bilimleri Enstitüsü; 2017.

https://tez.yok.gov.tr/

[27] Ombach J. A short introduction to stochastic optimization. Schedae

Informaticae 2014; 23: 9–20.

[28] Rao RV, Savsani VJ. Mechanical Design Optimization using Advanced

Optimization Techniques, Springer; 2012.

[29] Tech Target. https://whatis.techtarget.com/definition/stochastic-

optimization.

63

[30] Yan X, Zhou Y, Wen Y, Chai X. Qualitative and quantitative integrated

modeling for stochastic simulation and optimization, Journal of Applied

Mathematics 2013; 1–12. doi.org/10.1155/2013/831273

[31] Li G, Zhang W. Study on Indefinite stochastic linear quadratic optimal

control with inequality constraint. Journal of Applied Mathematics 2013; 1–

9 doi.org/10.1155/2013/805829

[32] Aydin L, Aydin O, Artem HS, Mert A. Design of dimensionally stable

composites using efficient global optimization method. Journal of materials:

Design and applications 2016; 1–13.

[33] Zakaria A, Firas BI, Hossain-Lipu MS, Hannan MA. Uncertainty models for

stochastic optimization in renewable energy applications. Renewable

Energy 2019; 1543–1571.

[34] Niamsup P, Rajchakit G. New results on robust stability and stabilization of

linear discrete-time stochastic systems with convex polytopic uncertainties.

Journal of Applied Mathematics 2013; 1–10. doi.org/10.1155/2013/368259

[35] Maggioni F, Cagnolari M, Bertazzi L, Wallace SW. Stochastic optimization

models for a bike-sharing problem with transshipment. European Journal of

Operational Research 2019; 276(1): 272–283.

[36] Maggioni F, Cagnolari M, Bertazzi L, Wallace SW. Stochastic optimization

models for a bike-sharing problem with transshipment. European Journal of

Operational Research 2019; 276(1): 272–283.

[37] Khayyam H, Naebe M, Bab-Hadiashar A, Jamshidi F, Li Q, Atkiss S, and

oth. Stochastic optimization models for energy management in

carbonization process of carbon fiber production. Applied Energy 2015;

158: 643–655.

[38] Tifkitsis KI, Mesogitis TS, Struzziero G, Skordos AA. Stochastic

multiobjective optimisation of the cure process of thick laminates.

Composites Part A 112 2018; 383–394.

64

[39] Ozturk S, Aydin L, Celik E. A comprehensive study on slicing processes

optimization of silicon ingot for photovoltaic applications. The Journal of

Solar Energy Engineering 2018; 161; 109–124.

[40] Grabusts P, Musatovs J, Golenkov V. The application of simulated

annealing method for optimal route detection between objects. Procedia

Computer Science 2018; 149; 95–101.

[41] Aydin L, Artem HS, Design and optimization of fiber composites. Ed.:

Seydibeyoglu MÖ, Mohanty AK, Misra M. Woodhead Publishing Series in

Composites Science and Engineering; 2017. 299–315

[42] Huang Z, Chen Y, An improved differential evolution algorithm based on

adaptive parameter. Journal of Control Science and Engineering Volume

2013; 1–5. doi.org/10.1155/2013/462706

[43] Das S, Suganthan PN, Differential evolution: A survey of the state-of-the-

art. IEEE Transactions on Evolutionary Computation 2011; 15(1): 4–35.

[44] Jujjavarapu S, Chimmiri V. Dynamic modeling and metabolic flux analysis

for optimized production of rhamnolipids. Chemical Engineering

Communications 2016; 203; 326–338.

[45] Arunachalam V. Optimization using Differential Evolution (M.S. Thesis).

London: The University of Western Ontario; 2008.

[46] Nelder JA, Mead R. A simplex method for function minimization. Comput.

J. 1965; 7(4): 308–313.

[47] Barati R. Parameter estimation of nonlinear Muskingum models using

Nelder– Mead simplex algorithm. J. Hydrol. Eng. 2011; 16 (11): 946–954.

[48] Karnopp DC, Random search techniques for optimization problems.

Automatica 1963; 1 (2–3): 111–121.

[49] Zabinsky ZB, Random search algorithms. Wiley Encyclopedia of

Operations Research and Management Science; 2009.

65

[50] Wolfram Mathematica software 11.3.

[51] Momin, J., Xin-She, Y. and Hans-Jürgen, Z. 2013. Test functions for global

optimization: A comprehensive survey. pp. 193–222. In: Xin-She, Y.,

Zhihua, C., Renbin, X., Amir Hossein, G. and Mehmet, K. [eds.]. Swarm

Intelligence and Bio-Inspired Computation, Elsevier.

[52] Karaboğa, D. 2018. Yapay zeka optimizasyon algoritmaları. Nobel

akademik yayıncılık, Ankara.

[53] Ingber, L. 1993. Simulated annealing: Practice versus theory. Math.

Comput. Model. 18(11): 29–57.

[54] Savran M, Aydin L. Stochastic optimization of graphite-flax/epoxy hybrid

laminated composite for maximum fundamental frequency and minimum

cost. Engineering Structures 2018; 174: 675–687.

[55] Vo-Duy T, Ho-Huu V, Do-Thi TD, Dang-Trung H, Nguyen-Thoi T. A

global numerical approach for lightweight design optimization of laminated

composite plates subjected to frequency constraints. Composite Structures

2017; 159: 646– 655.

[56] Nelder JA, Mead R. A simplex-method for function minimization.

Computer Journal 1965; 7(4): 308–313. doi.org/10.1093/comjnl/7.4.308.

[57] Sofroniou M, Knapp R. Advanced Numerical Differential Equation Solving

In Mathematica. Wolfram Mathematica Tutorial Collection 2008; Retrieved

from https:\\ library.wolfram.com.

[58] Wellin PR, Gaylord RJ, Kamin SN. An Introduction to Programming with

Mathematica. Cambridge University Press; 2005.

66

Appendices

Appendix A

Draft Design Chart

1 Level 1 of A Level 1 of B

2 Level 1 of A Level 2 of B

3 Level 1 of A Level 3 of B

4 Level 1 of A Level 4 of B

5 Level 1 of A Level 5 of B

6 Level 1 of A Level 6 of B

7 Level 1 of A Level 7 of B

8 Level 1 of A Level 8 of B

9 Level 1 of A Level 9 of B

10 Level 1 of A Level 10 of B

11 Level 1 of A Level 11 of B

12 Level 1 of A Level 12 of B

13 Level 1 of A Level 13 of B

14 Level 1 of A Level 14 of B

15 Level 1 of A Level 15 of B

16 Level 1 of A Level 16 of B

17 Level 1 of A Level 17 of B

18 Level 1 of A Level 18 of B

19 Level 1 of A Level 19 of B

20 Level 1 of A Level 20 of B

21 Level 1 of A Level 21 of B

22 Level 2 of A Level 1 of B

23 Level 2 of A Level 2 of B

24 Level 2 of A Level 3 of B

25 Level 2 of A Level 4 of B

26 Level 2 of A Level 5 of B

27 Level 2 of A Level 6 of B

28 Level 2 of A Level 7 of B

29 Level 2 of A Level 8 of B

67

30 Level 2 of A Level 9 of B

31 Level 2 of A Level 10 of B

32 Level 2 of A Level 11 of B

33 Level 2 of A Level 12 of B

34 Level 2 of A Level 13 of B

35 Level 2 of A Level 14 of B

36 Level 2 of A Level 15 of B

37 Level 2 of A Level 16 of B

38 Level 2 of A Level 17 of B

39 Level 2 of A Level 18 of B

40 Level 2 of A Level 19 of B

41 Level 2 of A Level 20 of B

42 Level 2 of A Level 21 of B

43 Level 3 of A Level 1 of B

44 Level 3 of A Level 2 of B

45 Level 3 of A Level 3 of B

46 Level 3 of A Level 4 of B

47 Level 3 of A Level 5 of B

48 Level 3 of A Level 6 of B

49 Level 3 of A Level 7 of B

50 Level 3 of A Level 8 of B

51 Level 3 of A Level 9 of B

52 Level 3 of A Level 10 of B

53 Level 3 of A Level 11 of B

54 Level 3 of A Level 12 of B

55 Level 3 of A Level 13 of B

56 Level 3 of A Level 14 of B

57 Level 3 of A Level 15 of B

58 Level 3 of A Level 16 of B

59 Level 3 of A Level 17 of B

60 Level 3 of A Level 18 of B

61 Level 3 of A Level 19 of B

62 Level 3 of A Level 20 of B

63 Level 3 of A Level 21 of B

68

Appendix B

Expanded Model Expressions of the

Case Studies – Energy Output

Models Name Models

1-L -21.9331 + 0.289894 x1 + 0.161759 x2

2-LR (-7777.01 + 56.9468 x1 + 6842.24 x2)/(78600.4 - 483.771 x1 + 2.69181 x2)

3-SON
111.467 - 3.0248 x1 + 0.0202703 x1^2 + 0.0328197 x2 + 0.00172591 x1 x2 - 7.3386*10^-6

x2^2

4-SONR
(-30774.6 + 554.359 x1 - 2.31006 x1^2 + 6276.09 x2 - 74.44 x1 x2 + 4.6039 x2^2)/(26293.6 -

114.857 x1 - 2.34895 x1^2 + 62.8224 x2 - 0.427037 x1 x2 - 0.0021201 x2^2)

5-TON

16.5977 - 0.260945 x1 - 0.00288916 x1^2 + 0.0000438868 x1^3 + 0.579852 x2 - 0.0121952

x1 x2 + 0.0000887332 x1^2 x2 - 0.00020572 x2^2 + 1.87585*10^-6 x1 x2^2 + 1.09167*10^-7

x2^3

6-TONR

(-2.58648*10^6 + 152756. x1 - 2696.3 x1^2 + 14.7827 x1^3 - 652407. x2 + 18153.1 x1 x2 -

122.941 x1^2 x2 - 286.732 x2^2 + 2.75221 x1 x2^2 + 0.37027 x2^3)/(-2.0604*10^6 + 36244.8

x1 + 218.544 x1^2 - 4.2118 x1^3 - 5107.08 x2 + 96.1947 x1 x2 - 0.468245 x1^2 x2 + 5.19197

x2^2 - 0.0339752 x1 x2^2 - 0.000671711 x2^3)

7-4thON

11.3675 - 0.0893683 x1 - 0.00199103 x1^2 - 0.0000100943 x1^3 + 3.20919*10^-7 x1^4 +

0.219245 x2 - 0.00217333 x1 x2 - 0.0000231139 x1^2 x2 + 5.5775*10^-7 x1^3 x2 +

0.00126262 x2^2 - 0.0000131368 x1 x2^2 - 5.5352*10^-8 x1^2 x2^2 - 3.92284*10^-6 x2^3 +

5.1732*10^-8 x1 x2^3 + 2.7604*10^-10 x2^4

8-4thONR

(-7.22376*10^8 + 2.21787*10^7 x1 - 52558.6 x1^2 - 3477.37 x1^3 + 25.9284 x1^4 +

2.58637*10^7 x2 + 215319. x1 x2 - 15614.8 x1^2 x2 + 110.469 x1^3 x2 - 815129. x2^2 +

18476.9 x1 x2^2 - 102.245 x1^2 x2^2 + 917.256 x2^3 - 13.1132 x1 x2^3 + 0.469367

x2^4)/(2.63726*10^8 - 654528. x1 - 89751.8 x1^2 + 622.839 x1^3 + 0.998409 x1^4 -

4.98456*10^6 x2 + 85568.6 x1 x2 + 69.197 x1^2 x2 - 4.29018 x1^3 x2 + 10255.9 x2^2 -

207.796 x1 x2^2 + 0.772572 x1^2 x2^2 + 6.19006 x2^3 - 0.00475207 x1 x2^3 - 0.00461814

x2^4)

9-5thON

2.13396 - 0.00111265 x1 - 0.00020523 x1^2 - 2.80514*10^-6 x1^3 - 1.45122*10^-8 x1^4 +

2.86932*10^-10 x1^5 + 0.388169 x2 - 0.00394147 x1 x2 - 0.0000759043 x1^2 x2 -

2.26404*10^-7 x1^3 x2 + 1.67822*10^-8 x1^4 x2 - 0.00060666 x2^2 + 0.000074933 x1 x2^2

+ 5.12302*10^-7 x1^2 x2^2 - 1.5954*10^-8 x1^3 x2^2 - 0.0000133636 x2^3 - 4.74287*10^-7

x1 x2^3 + 6.99304*10^-9 x1^2 x2^3 + 1.00205*10^-7 x2^4 - 8.76734*10^-10 x1 x2^4 -

4.54219*10^-11 x2^5

69

10-5thONR

(-5.91724*10^11 + 1.5924*10^10 x1 - 5.31164*10^7 x1^2 - 586354. x1^3 - 12750.8 x1^4 +

145.54 x1^5 - 1.31842*10^9 x2 - 6.0386*10^6 x1 x2 + 1.25652*10^6 x1^2 x2 - 14884. x1^3

x2 + 52.8742 x1^4 x2 + 7.7203*10^7 x2^2 - 2.50593*10^6 x1 x2^2 + 18641.3 x1^2 x2^2 -

45.9843 x1^3 x2^2 - 272708. x2^3 + 12698.6 x1 x2^3 - 56.8033 x1^2 x2^3 - 1223.88 x2^4 -

13.2575 x1 x2^4 + 5.03118 x2^5)/(-2.76554*10^10 + 6.70612*10^8 x1 + 1.47781*10^6 x1^2

- 99462.1 x1^3 + 313.035 x1^4 + 2.0602 x1^5 + 1.15013*10^8 x2 - 5.76438*10^6 x1 x2 +

28856.1 x1^2 x2 + 59.0248 x1^3 x2 - 0.629819 x1^4 x2 + 1.1102*10^6 x2^2 + 42559.7 x1

x2^2 - 573.755 x1^2 x2^2 + 2.79843 x1^3 x2^2 - 27083.2 x2^3 + 271.068 x1 x2^3 - 1.40554

x1^2 x2^3 + 61.3238 x2^4 - 0.33473 x1 x2^4 - 0.00752563 x2^5)

11-FOTN
-0.438492 + 0.000597981 x1 + 0.161427 x2 - 3.00312 Cos[x1] + 0.158221 Cos[x2] - 4.43859

Sin[x1] - 0.0143774 Sin[x2]

12-FOTNR

(40661.6 + 440.814 x1 - 95.2483 x2 + 24601.6 Cos[x1] +

2182.82 Cos[x2] + 32841.9 Sin[x1] - 44598.4 Sin[x2])/(-6563.82 + 143.09 x1 - 10.2172 x2 +

1969.13 Cos[x1] - 17.4551 Cos[x2] + 3584.69 Sin[x1] - 1631.43 Sin[x2])

13-SOTN

6.57696 - 4.3608 Cos[x1] + 9.158 Cos[x1]^2 - 5.46193 Cos[x2] - 2.9776 Cos[x1] Cos[x2] +

1.66898 Cos[x2]^2 - 1.56304 Sin[x1] + 6.79116 Sin[x1]^2 - 5.10525 Sin[x2] + 0.387997

Sin[x1] Sin[x2] + 16.4044 Sin[x2]^2

14-SOTNR

(16.0914 - 2.83823 Cos[x1] + 13.4868 Cos[x1]^2 + 23.4494 Cos[x2] - 0.687061 Cos[x1]

Cos[x2] - 14.2928 Cos[x2]^2 - 10.9968 Sin[x1] + 32.2789 Sin[x1]^2 - 5.07733 Sin[x2] +

0.00121628 Sin[x1] Sin[x2] - 12.531 Sin[x2]^2)/(0.920622 + 0.250771 Cos[x1] + 0.834167

Cos[x1]^2 + 1.11558 Cos[x2] + 0.00353371 Cos[x1] Cos[x2] - 0.2923 Cos[x2]^2 + 1.11193

Sin[x1] - 0.99932 Sin[x1]^2 - 0.175298 Sin[x2] + 0.00531203 Sin[x1] Sin[x2] - 0.415149

Sin[x2]^2)

15-TOTN

6.52008 - 3.17251 Cos[x1] + 9.01618 Cos[x1]^2 - 3.859 Cos[x1]^3 - 1.8912 Cos[x2] -

2.75515 Cos[x1] Cos[x2] - 1.92103 Cos[x1]^2 Cos[x2] + 1.83429 Cos[x2]^2 + 3.81503

Cos[x1] Cos[x2]^2 - 2.67568 Cos[x2]^3 - 1.96928 Sin[x1] + 6.97295 Sin[x1]^2 + 4.25055

Sin[x1]^3 - 10.7246 Sin[x2] - 10.9571 Sin[x1] Sin[x2] + 22.8285 Sin[x1]^2 Sin[x2] + 16.0737

Sin[x2]^2 - 2.44628 Sin[x1] Sin[x2]^2 - 0.166613 Sin[x2]^3

16-TOTNR

(338.723 - 1444.81 Cos[x1] - 1448.63 Cos[x1]^2 + 1190.03 Cos[x1]^3 + 1898.91 Cos[x2] +

846.619 Cos[x1] Cos[x2] - 2770.44 Cos[x1]^2 Cos[x2] - 139.594 Cos[x2]^2 + 1442.71

Cos[x1] Cos[x2]^2 - 612.979 Cos[x2]^3 - 121.534 Sin[x1] + 185.93 Sin[x1]^2 + 901.832

Sin[x1]^3 - 267.356 Sin[x2] - 910.611 Sin[x1] Sin[x2] + 1673.28 Sin[x1]^2 Sin[x2] + 305.897

Sin[x2]^2 - 1843.9 Sin[x1] Sin[x2]^2 - 267.951 Sin[x2]^3)/(60.096 + 310.438 Cos[x1] -

1.70268 Cos[x1]^2 - 327.646 Cos[x1]^3 + 78.8011 Cos[x2] + 33.0701 Cos[x1] Cos[x2] -

113.031 Cos[x1]^2 Cos[x2] - 74.0187 Cos[x2]^2 + 57.2544 Cos[x1] Cos[x2]^2 - 27.8132

Cos[x2]^3 + 158.356 Sin[x1] - 21.6359 Sin[x1]^2 + 88.5441 Sin[x1]^3 - 7.78449 Sin[x2] -

32.9114 Sin[x1] Sin[x2] + 57.0037 Sin[x1]^2 Sin[x2] -56.4131 Sin[x2]^2 - 73.0478 Sin[x1]

Sin[x2]^2 - 10.2198 Sin[x2]^3)

17-FOLN -43.1379 - 4.09369 Log[x2] + 15.6471 Log[x1]

18-FOLNR
(108.198 - 5.37001 Log[x2] - 23.1458 Log[x1])/(5.46204 -0.201769 Log[x2] - 1.18436

Log[x1])

19-SOLN
5265.91 - 6.60562 Log[x2] - 12.654 Log[x2]^2 - 2449.29 Log[x1] + 0.562544 Log[x2]

Log[x1] + 286.268 Log[x1]^2

20-SOLNR
(247.468 + 1527.14 Log[x2] - 104.439 Log[x2]^2 + 279. Log[x1] - 42.207 Log[x2] Log[x1] -

70.3956 Log[x1]^2)/(8.66624 + 79.7473 Log[x2] - 4.03242 Log[x2]^2 + 15.5922 Log[x1] -

70

17.8812 Log[x2] Log[x1] - 3.76287 Log[x1]^2)

21-SOTNR+LR

(7333.5 + 88.5054 x1 - 896.674 x2 + 396.149 Cos[x1] + 26872.8 Cos[x1]^2 - 19582.8 Cos[x2]

- 114553. Cos[x1] Cos[x2] + 70463.8 Cos[x2]^2 - 83611.6 Sin[x1] - 84207.6 Sin[x1]^2 +

32809.9 Sin[x2] + 132889. Sin[x1] Sin[x2] - 36533.2 Sin[x2]^2)/(7246.5 + 25.8093 x1 -

27.021 x2 + 780.14 Cos[x1] + 68.7036 Cos[x1]^2 - 758.895 Cos[x2] - 4386.74 Cos[x1]

Cos[x2] - 4887.92 Cos[x2]^2 + 608.675 Sin[x1] - 11920.4 Sin[x1]^2 + 1706.9 Sin[x2] +

5374.45 Sin[x1] Sin[x2] - 7869.99 Sin[x2]^2)

22-TOTNR+LR

(2133. + 320.635 x1 - 205.903 x2 - 12084.8 Cos[x1] - 5576.91 Cos[x1]^3 + 9750.25 Cos[x2] -

20141.4 Cos[x1]^2 Cos[x2] - 11069.1 Cos[x1] Cos[x2]^2 + 7243.55 Cos[x2]^3 - 1405.03

Sin[x1] + 15394.1 Sin[x1]^3 - 6714.19 Sin[x2] - 38801. Sin[x1]^2 Sin[x2] + 42111.3 Sin[x1]

Sin[x2]^2 + 41073.5 Sin[x2]^3)/(1488.49 + 4.66931 x1 - 9.49081 x2 - 256.72 Cos[x1] -

385.345 Cos[x1]^3 + 176.28 Cos[x2] - 764.453 Cos[x1]^2 Cos[x2] - 569.073 Cos[x1]

Cos[x2]^2 + 514.395 Cos[x2]^3 + 2758.58 Sin[x1] - 4566.93 Sin[x1]^3 - 291.338 Sin[x2] -

1419.3 Sin[x1]^2 Sin[x2] + 1974.05 Sin[x1] Sin[x2]^2 + 1672.5 Sin[x2]^3)

23-SOLNR+LR

(2036.91 + 14.8309 x1 + 1.80667 x2 + 17.1551 Log[x2] -0.704283 Log[x2]^2 - 368.864

Log[x1] - 3.49455 Log[x2] Log[x1] - 83.8714 Log[x1]^2)/(-145.263 - 0.875921 x1 +

0.000754009 x2 + 0.841054 Log[x2] - 0.0270605 Log[x2]^2 + 46.1167 Log[x1] - 0.182322

Log[x2] Log[x1] + 1.25115 Log[x1]^2)

24-SOTN+TON

-0.140345 - 0.00104205 x1 - 2.8312*10^-6 x1^2 + 9.38326*10^-8 x1^3 + 0.595734 x2 -

0.0123896 x1 x2 + 0.0000895374 x1^2 x2 - 0.000251451 x2^2 + 2.0293*10^-6 x1 x2^2 +

1.7505*10^-7 x2^3 - 0.598247 Cos[x1] + 0.00524295 Cos[x1]^2 + 0.175067 Cos[x2] +

0.00719196 Cos[x1] Cos[x2] + 0.0533476 Cos[x2]^2 - 0.307537 Sin[x1] - 0.915619 Sin[x1]^2

+ 0.0847963 Sin[x2] + 0.127651 Sin[x1] Sin[x2] - 0.44356 Sin[x2]^2

25-SOTNR+TONR

(1.7473*10^7 - 21085.8 x1 - 4799.49 x1^2 - 42.8254 x1^3 - 535167. x2 + 16530.7 x1 x2 -

121.218 x1^2 x2 - 1304.63 x2^2 + 14.7893 x1 x2^2 + 1.13081 x2^3 + 1.41614*10^6 Cos[x1]

+ 1.07223*10^7 Cos[x1]^2 + 14025.5 Cos[x2] + 30404.4 Cos[x1] Cos[x2] + 4.50259*10^7

Cos[x2]^2 + 3.40713*10^7 Sin[x1] - 8.74425*10^7 Sin[x1]^2 + 94.89 Sin[x2] - 17215.4

Sin[x1] Sin[x2] + 4.51065*10^7 Sin[x2]^2)/(1.33924*10^6 - 3195.38 x1 + 2.9064 x1^2 -

2.88511 x1^3 - 22010.3 x2 + 425.835 x1 x2 - 2.05851 x1^2 x2 + 18.0079 x2^2 - 0.107341 x1

x2^2 - 0.0051834 x2^3 - 1.06069*10^6 Cos[x1] - 634958. Cos[x1]^2 + 891.224 Cos[x2] +

1730.96 Cos[x1] Cos[x2] - 667141. Cos[x2]^2 - 4.23654*10^6 Sin[x1] + 5.34844*10^6

Sin[x1]^2 + 446.237 Sin[x2] - 1036.18 Sin[x1] Sin[x2] - 663615. Sin[x2]^2)

26-SOTN+4thON

-0.0955151 - 0.00105929 x1 - 0.0000106698 x1^2 - 9.44749*10^-8 x1^3 - 6.67653*10^-10

x1^4 + 0.19581 x2 - 0.00177917 x1 x2 - 0.0000187827 x1^2 x2 + 4.92891*10^-7 x1^3 x2 +

0.00147901 x2^2 - 0.0000182999 x1 x2^2 - 2.0918*10^-8 x1^2 x2^2 - 4.20667*10^-6 x2^3 +

5.20916*10^-8 x1 x2^3 + 8.23978*10^-10 x2^4 - 0.328351 Cos[x1] - 0.102768 Cos[x1]^2 +

0.161134 Cos[x2] + 0.0291301 Cos[x1] Cos[x2] + 0.13898 Cos[x2]^2 + 0.133171 Sin[x1] -

0.214735 Sin[x1]^2 + 0.115924 Sin[x2] + 0.100275 Sin[x1] Sin[x2] - 0.409795 Sin[x2]^2

27-SOTNR+4thONR

(4.64714*10^6 + 7021.07 x1 - 814.721 x1^2 - 25.8387 x1^3 + 0.395083 x1^4 + 2.546*10^7

x2 - 31349.3 x1 x2 - 1883.87 x1^2 x2 - 17.6464 x1^3 x2 - 61560.8 x2^2 - 7308.88 x1 x2^2 +

98.8004 x1^2 x2^2 + 1215.55 x2^3 - 19.4795 x1 x2^3 + 2.77512 x2^4 - 2.6528*10^7 Cos[x1]

- 2.8575*10^7 Cos[x1]^2 - 1.44771*10^6 Cos[x2] + 2.0372*10^6 Cos[x1] Cos[x2] -

2.57996*10^7 Cos[x2]^2 - 1.21337*10^8 Sin[x1] + 1.49174*10^8 Sin[x1]^2 - 722243.

Sin[x2] - 8.71854*10^6 Sin[x1] Sin[x2] - 2.43819*10^7 Sin[x2]^2)/(-5.60292*10^6 - 48587.1

x1 - 435.359 x1^2 - 4.2769 x1^3 + 0.874916 x1^4 + 331718. x2 - 29980.2 x1 x2 - 66.3603

x1^2 x2 + 4.81939 x1^3 x2 - 14389.7 x2^2 + 350.151 x1 x2^2 - 2.65734 x1^2 x2^2 + 49.42

x2^3 - 0.310336 x1 x2^3 - 0.0139878 x2^4 + 2.65183*10^7 Cos[x1] - 1.68261*10^6

Cos[x1]^2 - 98976.2 Cos[x2] + 160267. Cos[x1] Cos[x2] - 18569*10^7 Cos[x2]^2 +

2.24858*10^7 Sin[x1] + 1.00928*10^8 Sin[x1]^2 - 33578.1 Sin[x2] - 517955. Sin[x1] Sin[x2]

- 1.20816*10^7 Sin[x2]^2)

28-SOTN+5thON
-0.0099731 - 0.000541734 x1 - 0.0000120441 x1^2 - 2.10715*10^-7 x1^3 - 3.26139*10^-9

x1^4 - 4.67847*10^-11 x1^5 + 0.346837 x2 - 0.0033633 x1 x2 - 0.000065053 x1^2 x2 -

71

1.73432*10^-7 x1^3 x2 + 1.51227*10^-8 x1^4 x2 + 3.29946*10^-6 x2^2 + 0.0000571986 x1

x2^2 + 3.27266*10^-7 x1^2 x2^2 - 1.3571*10^-8 x1^3 x2^2 - 0.0000137083 x^3 -

3.12572*10^-7 x1 x2^3 + 6.10734*10^-9 x1^2 x2^3 + 7.80261*10^-8 x2^4 - 9.27297*10^-10

x1 x2^4 - 1.01067*10^-11 x2^5 + 0.195688 Cos[x1] - 0.122197 Cos[x1]^2 + 0.173385

Cos[x2] - 0.0403611 Cos[x1] Cos[x2] + 0.196717 Cos[x2]^2 + 0.28996 Sin[x1] + 0.405695

Sin[x1]^2 + 0.0889131 Sin[x2] + 0.198345 Sin[x1] Sin[x2] - 0.234305 Sin[x2]^2

29-SOTNR+5thONR

(-7.57215*10^8 - 1.29622*10^7 x1 - 177278. x1^2 - 1947.02 x1^3 - 12.3385 x1^4 + 1.0507

x1^5 + 5.8846*10^9 x2 - 3.42052*10^7 x1 x2 - 688108. x1^2 x2 + 1113.54 x1^3 x2 +

29.7283 x1^4 x2 - 5.24229*10^7 x2^2 - 178146. x1 x2^2 + 2078.65 x1^2 x2^2 + 76.3378

x1^3 x2^2 + 308182. x2^3 + 282.27 x1 x2^3 - 31.4937 x1^2 x2^3 + 348.044 x2^4 - 10.1731

x1 x2^4 + 0.559587 x2^5 - 3.28754*10^9 Cos[x1] - 1.71218*10^9 Cos[x1]^2 +

3.29741*10^8 Cos[x2] + 2.71996*10^8 Cos[x1] Cos[x2] - 3.46921*10^9 Cos[x2]^2 -

1.20318*10^10 Sin[x1] + 1.87884*10^10 Sin[x1]^2 - 1.88787*10^7 Sin[x2] +

5.34581*10^8 Sin[x1] Sin[x2] - 2.01578*10^9 Sin[x2]^2)/(-6.92656*10^8 - 7.78012*10^6 x1

- 81676. x1^2 - 513.936 x1^3 + 7.04989 x1^4 + 1.41369 x1^5 - 4.28251*10^8 x2 - 681239. x1

x2 + 21643.9 x1^2 x2 + 313.269 x1^3 x2 + 0.220191 x1^4 x2 + 1.92947*10^6 x2^2 + 10162.1

x1 x2^2 + 94.8713 x1^2 x2^2 - 2.48495 x1^3 x2^2 + 7318.25 x2^3 - 371.329 x1 x2^3 +

1.71496 x1^2 x2^3 + 24.4251 x2^4 + 0.0697913 x1 x2^4 - 0.0310641 x2^5 + 1.37124*10^9

Cos[x1] + 1.81178*10^8 Cos[x1]^2 + 1.51708*10^7 Cos[x2] + 1.19367*10^7 Cos[x1]

Cos[x2] - 9.95582*10^8 Cos[x2]^2 - 3.63799*10^9 Sin[x1] + 2.41953*10^10 Sin[x1]^2 -

596607. Sin[x2] + 1.29803*10^7 Sin[x1] Sin[x2] - 9.96127*10^8 Sin[x2]^2)

30-TOTN+TON

-0.0717383 - 0.000568824 x1 - 2.38021*10^-6 x1^2 + 3.05374*10^-8 x1^3 + 0.655957 x2 -

0.0141489 x1 x2 + 0.000101293 x1^2 x2 - 0.000220343 x2^2 + 1.86519*10^-6 x1 x2^2 +

1.63652*10^-7 x2^3 - 0.273484 Cos[x1] - 0.00476383 Cos[x1]^2 - 0.387281 Cos[x1]^3 -

0.088718 Cos[x2] - 0.0823063 Cos[x1] Cos[x2] + 0.461116 Cos[x1]^2 Cos[x2] + 0.110016

Cos[x2]^2 + 0.0709806 Cos[x1] Cos[x2]^2 - 0.281944 Cos[x2]^3 - 0.148308 Sin[x1] -

0.439435 Sin[x1]^2 - 0.373843 Sin[x1]^3 - 1.1065 Sin[x2] + 0.0616452 Sin[x1] Sin[x2] +

0.20165 Sin[x1]^2 Sin[x2] - 0.313705 Sin[x2]^2 - 0.420237 Sin[x1] Sin[x2]^2 + 1.52303

Sin[x2]^3

31-TOTNR+TONR

(3.4018*10^8 + 3.26127*10^6 x1 + 18641.3 x1^2 + 176.819 x1^3 + 340092. x2 - 9329.26 x1

x2 + 62.8696 x1^2 x2 - 301.825 x2^2 + 3.57896 x1 x2^2 + 0.422679 x2^3 + 3.02228*10^8

Cos[x1] - 2.74168*10^8 Cos[x1]^2 + 7.65348*10^7 Cos[x1]^3 - 100413. Cos[x2] - 7769.18

Cos[x1] Cos[x2] + 4202.55 Cos[x1]^2 Cos[x2] - 3.80119*10^7 Cos[x2]^2 + 25843.3 Cos[x1]

Cos[x2]^2 + 124200. Cos[x2]^3 + 3.59726*10^8 Sin[x1] - 3.44634*10^9 Sin[x1]^2 +

2.98537*10^9 Sin[x1]^3 - 17878.4 Sin[x2] - 6878.28 Sin[x1] Sin[x2] + 13630.6 Sin[x1]^2

Sin[x2] - 3.80348*10^7 Sin[x2]^2 + 41969.6 Sin[x1] Sin[x2]^2 + 20813.5

Sin[x2]^3)/(2.8002*10^6 - 193934. x1 + 296.077 x1^2 - 19.4229 x1^3 - 6515.78 x2 + 145.785

x1 x2 - 0.785409 x1^2 x2 + 4.78022 x2^2 - 0.0374808 x1 x2^2 + 0.000855661 x2^3 -

3.05323*10^6 Cos[x1] + 6.17525*10^6 Cos[x1]^2 - 1.51268*10^7 Cos[x1]^3 - 1667.88

Cos[x2] - 328.015 Cos[x1] Cos[x2] - 106.064 Cos[x1]^2 Cos[x2] - 6.25197*10^6 Cos[x2]^2 +

1227.73 Cos[x1] Cos[x2]^2 + 2091.06 Cos[x2]^3 - 3.63546*10^6 Sin[x1] + 1.54832*10^8

Sin[x1]^2 - 1.57591*10^8 Sin[x1]^3 - 334.202 Sin[x2] - 639.339 Sin[x1] Sin[x2] + 973.345

Sin[x1]^2 Sin[x2] - 6.25324*10^6 Sin[x2]^2 + 2760.55 Sin[x1] Sin[x2]^2 + 186.185

Sin[x2]^3)

32-TOTN+4thON

-0.00502754 - 0.000159129 x1 - 3.19154*10^-6 x1^2 -5.34623*10^-8 x1^3 - 8.08115*10^-10

x1^4 + 0.274477 x2 - 0.00343606 x1 x2 - 0.000035982 x1^2 x2 + 7.63648*10^-7 x1^3 x2 +

0.00157064 x2^2 - 8.40224*10^-6 x1 x2^2 - 1.08032*10^-7 x1^2 x2^2 - 6.46673*10^-6 x2^3

+ 5.91744*10^-8 x1 x2^3 + 3.78244*10^-9 x2^4 + 0.0453686 Cos[x1] - 0.0310349 Cos[x1]^2

+ 0.0704816 Cos[x1]^3 + 0.0462577 Cos[x2] - 0.113194 Cos[x1] Cos[x2] + 0.48607

Cos[x1]^2 Cos[x2] + 0.219068 Cos[x2]^2 - 0.351471 Cos[x1] Cos[x2]^2 - 0.588317

Cos[x2]^3 + 0.0649675 Sin[x1] + 0.0871189 Sin[x1]^2 + 0.10166 Sin[x1]^3 - 1.09513 Sin[x2]

+ 0.746161 Sin[x1] Sin[x2] - 1.24828 Sin[x1]^2 Sin[x2] - 0.244143 Sin[x2]^2 - 0.0256369

Sin[x1] Sin[x2]^2 + 2.10235 Sin[x2]^3

33-TOTNR+4thONR

(1.00002 + 1.00073 x1 + 1.02579 x1^2 + 1.57645 x1^3 - 0.225452 x1^4 + 1.00097 x2 +

1.03711 x1 x2 + 2.00781 x1^2 x2 + 7.46365 x1^3 x2 + 1.05822 x2^2 + 2.41051 x1 x2^2 -

16.4264 x1^2 x2^2 + 4.89508 x2^3 + 11.6423 x1 x2^3 + 2.60731 x2^4 + 0.999833 Cos[x1] +

0.999973 Cos[x1]^2 + 0.99988 Cos[x1]^3 + 1.00005 Cos[x2] + 0.999989 Cos[x1] Cos[x2] +

1.00003 Cos[x1]^2 Cos[x2] + 0.999979 Cos[x2]^2 + 0.999916 Cos[x1] Cos[x2]^2 + 1.00002

72

Cos[x2]^3 + 1.0001 Sin[x1] + 1.00004 Sin[x1]^2 + 1.00005 Sin[x1]^3 + 0.999976 Sin[x2] +

1.99998 Sin[x1] Sin[x2] + 0.999993 Sin[x1]^2 Sin[x2] + 1.00004 Sin[x2]^2 + 1.00006 Sin[x1]

Sin[x2]^2 + 0.999977 Sin[x2]^3)/(0.999961 + 1.00037 x1 + 1.1448 x1^2 + 11.1201 x1^3 +

0.395741 x1^4 + 0.998105 x2 + 1.1027 x1 x2 + 12.136 x1^2 x2 - 1.43365 x1^3 x2 + 1.03723

x2^2 + 18.0477 x1 x2^2 + 0.7269 x1^2 x2^2 + 48.1231 x2^3 - 0.435331 x1 x2^3 +

0.00253352 x2^4 + 1.00213 Cos[x1] + 1.00035 Cos[x1]^2 + 1.00162 Cos[x1]^3 + 0.999785

Cos[x2] + 1.00011 Cos[x1] Cos[x2] + 0.999845 Cos[x1]^2 Cos[x2] + 1.00017 Cos[x2]^2 +

1.0011 Cos[x1] Cos[x2]^2 + 0.999949 Cos[x2]^3 + 0.99891 Sin[x1] + 0.999613 Sin[x1]^2 +

0.999462 Sin[x1]^3 + 1.00006 Sin[x2] + 1.99991 Sin[x1] Sin[x2] + 0.999988 Sin[x1]^2

Sin[x2] + 0.99979 Sin[x2]^2 + 0.999486 Sin[x1] Sin[x2]^2 + 1.00007 Sin[x2]^3)

34-FOLNR+LR
(1785.26 + 7.39057 x1 + 1.06146 x2 + 1.12395 Log[x2] - 542.859 Log[x1])/(-94.0417 -

0.494544 x1 + 0.000463077 x2 + 0.0265098 Log[x2] + 31.9305 Log[x1])

35-FOLN+SON
130.151 - 2.81394 x1 + 0.0194985 x1^2 + 0.0341223 x2 + 0.00172313 x1 x2 - 0.00001009

x2^2 + 0.155487 Log[x2] - 6.99938 Log[x1]

36-FOLNR+SONR

(40238.8 - 1007.59 x1 + 7.38412 x1^2 + 2680.58 x2 - 30.8179 x1 x2 + 0.433313 x2^2 +

254.254 Log[x2] - 1861.03 Log[x1])/(19347.4 - 247.081 x1 + 0.306676 x1^2 + 9.34185 x2 -

0.0670296 x1 x2 - 0.00286666 x2^2 + 6.73411 Log[x2] - 81.3633 Log[x1])

37-FOLN+TON

15.0865 - 0.272436 x1 - 0.00292811 x1^2 + 0.0000447138 x1^3 + 0.575466 x2 - 0.0119844

x1 x2 + 0.0000869997 x1^2 x2 - 0.000224381 x2^2 + 2.02689*10^-6 x1 x2^2 + 1.20084*10^-

7 x2^3 + 0.143385 Log[x2] + 0.499587 Log[x1]

38-FOLNR+TONR

(-1.11246*10^7 - 56607.3 x1 - 953.958 x1^2 + 8.58859 x1^3 - 588623. x2 + 16447.4 x1 x2 -

111.739 x1^2 x2 - 311.782 x2^2 + 3.08547 x1 x2^2 + 0.381756 x2^3 + 1489.35 Log[x2] +

3.95033*10^6 Log[x1])/(-1.56941*10^6 + 17951.8 x1 + 373.52 x1^2 - 4.54147 x1^3 -

5547.42 x2 + 105.187 x1 x2 - 0.511742 x1^2 x2 + 5.45908 x2^2 - 0.0356526 x1 x2^2 -

0.000799761 x2^3 + 74.197 Log[x2] + 32758.4 Log[x1])

39-FOLN+4thON

8.33142 - 0.0982929 x1 - 0.00191392 x1^2 - 9.14913*10^-6 x1^3 + 3.06749*10^-7 x1^4 +

0.244321 x2 - 0.00246401 x1 x2 - 0.0000268445 x1^2 x2 + 6.01267*10^-7 x1^3 x2 +

0.00106257 x2^2 - 8.5028*10^-6 x1 x2^2 - 8.14957*10^-8 x1^2 x2^2 - 3.84613*10^-6 x2^3 +

5.04535*10^-8 x1 x2^3 + 3.27408*10^-10 x2^4 + 0.118661 Log[x2] + 0.75798 Log[x1]

40-FOLNR+4thONR

(1.13784*10^8 - 321153. x1 - 48257. x1^2 - 455.056 x1^3 + 7.92674 x1^4 + 2.87557*10^7 x2

- 230267. x1 x2 - 2426.2 x1^2 x2 + 13.5905 x1^3 x2 - 402983. x2^2 + 4579.09 x1 x2^2 +

1.90454 x1^2 x2^2 + 1455.34 x2^3 - 17.1217 x1 x2^3 - 5.54603*10^-6 x2^4 + 1.1182

Log[x2] + 2.87782*10^7 Log[x1])/(1.83029*10^8 - 1.33666*10^6 x1 - 29829.1 x1^2 -

199.456 x1^3 + 3.40003 x1^4 - 4.06825*10^6 x2 + 38308.9 x1 x2 + 385.723 x1^2 x2 -

3.21572 x1^3 x2 + 18940. x2^2 - 308.611 x1 x2^2 + 1.00926 x1^2 x2^2 - 5.30365 x2^3 +

0.062395 x1 x2^3 + 5.79103*10^-8 x2^4 - 0.268222 Log[x2] + 2.05081*10^7 Log[x1])

73

Appendix C

Expanded Model Expressions of the

Case Studies – Moisture Output

Models Name Models

1-L 0.12677 - 0.000559424 x1 - 0.000328263 x2

2-LR (71.7185 - 0.592572 x1 - 0.0720167 x2)/(454.917 - 3.66481 x1 + 4.01164 x2)

3-SON
0.307125 - 0.00332097 x1 + 0.0000121166 x1^2 - 0.00161085 x2 + 5.59495*10^-6 x1 x2 +

2.847*10^-6 x2^2

4-SONR

(2.26714*10^7 - 116308. x1 + 979.434 x1^2 - 8113.61 x2 + 63.9685 x1 x2 + 28.2714 x2^2 -

33799.5 Cos[x2] - 4.42467*10^6 Log[x1])/(3.09691*10^7 - 806338. x1 + 3837.83 x1^2 -

46345.5 x2 - 205.478 x1 x2 + 1919.68 x2^2 - 520826. Cos[x2] + 2.58932*10^6 Log[x1])

5-TON

0.679099 - 0.00676838 x1 - 0.0000892269 x1^2 + 1.09937*10^-6 x1^3 - 0.00684891 x2 +

0.000127187 x1 x2 - 8.24113*10^-7 x1^2 x2 + 9.2*10^-6 x2^2 + 8.59612*10^-9 x1 x2^2 -

1.56017*10^-8 x2^3

6-TONR

(124531. - 1956.79 x1 - 16.3574 x1^2 + 0.277255 x1^3 - 3297.76 x2 + 88.6517 x1 x2 -

0.615177 x1^2 x2 - 0.12879 x2^2 + 0.0199973 x1 x2^2 - 0.00105445 x2^3)/(556304. -

5427.63 x1 - 165.262 x1^2 + 1.90438 x1^3 + 3474.86 x2 - 65.3973 x1 x2 + 0.117678 x1^2

x2 - 121.708 x2^2 + 1.64637 x1 x2^2 + 0.205334 x2^3)

7-4thON

0.760415 - 0.00431708 x1 - 0.000110394 x1^2 - 5.95087*10^-7 x1^3 + 1.76453*10^-8 x1^4 -

0.0143282 x2 + 0.000184772 x1 x2 + 2.15976*10^-6 x1^2 x2 - 3.21668*10^-8 x1^3 x2 +

0.0000677951 x2^2 - 1.84496*10^-6 x1 x2^2 + 1.47453*10^-8 x1^2 x2^2 + 2.71487*10^-8

x2^3 - 8.01694*10^-10 x1 x2^3 + 2.69031*10^-11 x2^4

8-4thONR

(5.52397*10^9 - 1.51*10^8 x1 + 2.50171*10^6 x1^2 - 44875.9 x1^3 + 345.095 x1^4 +

2.89132*10^7 x2 - 4.86034*10^6 x1 x2 + 123551. x1^2 x2 - 879.199 x1^3 x2 + 720376.

x2^2 - 23704.7 x1 x2^2 + 220.121 x1^2 x2^2 + 102.463 x2^3 - 12.2171 x1 x2^3 + 1.13047

x2^4)/(3.02846*10^10 - 4.28402*10^8 x1 - 4.0617*10^6 x1^2 + 8246.74 x1^3 + 740.579

x1^4 - 8.41975*10^7 x2 + 6.70892*10^6 x1 x2 - 99522.7 x1^2 x2 + 108.008 x1^3 x2 -

6.36674*10^6 x2^2 + 133686. x1 x2^2 - 430.01 x1^2 x2^2 - 33005.7 x2^3 + 502.109 x1 x2^3

- 23.3397 x2^4)

9-5thON

0.58222 - 0.00130373 x1 - 0.0000690783 x1^2 - 7.90644*10^-7 x1^3 - 1.12456*10^-9 x1^4 +

1.64032*10^-10 x1^5 - 0.00983683 x2 + 0.0000860669 x1 x2 + 1.79766*10^-6 x1^2 x2 +

7.36726*10^-9 x1^3 x2 - 3.40231*10^-10 x1^4 x2 + 0.0000212271 x2^2 - 1.04889*10^-6 x1

x2^2 - 7.95732*10^-9 x1^2 x2^2 + 2.19444*10^-10 x1^3 x2^2 + 3.15304*10^-7 x2^3 +

2.54196*10^-9 x1 x2^3 - 6.21507*10^-11 x1^2 x2^3 - 1.42256*10^-9 x2^4 + 1.00192*10^-

74

11 x1 x2^4 + 9.27437*10^-13 x2^5

10-5thONR

(-6.24355*10^9 + 1.27225*10^8 x1 + 697026. x1^2 - 18124.6 x1^3 - 70.699 x1^4 + 1.22298

x1^5 + 4.69351*10^7 x2 - 622122. x1 x2 - 12712.5 x1^2 x2 + 120.977 x1^3 x2 + 0.288804

x1^4 x2 - 850275. x2^2 + 14786.6 x1 x2^2 + 170.488 x1^2 x2^2 - 2.40229 x1^3 x2^2 +

14079.8 x2^3 - 427.187 x1 x2^3 + 2.88268 x1^2 x2^3 + 2.60554 x2^4 + 0.0555936 x1 x2^4 -

0.00989203 x2^5)/(-1.58162*10^10 - 1.756*10^8 x1 + 1.97975*10^7 x1^2 - 311901. x1^3 +

2185.11 x1^4 - 7.52776 x1^5 + 1.3918*10^9 x2 - 3.2763*10^7 x1 x2 + 240127. x1^2 x2 -

3259.79 x1^3 x2 + 31.1884 x1^4 x2 - 4.5572*10^7 x2^2 + 717797. x1 x2^2 + 7280.82 x1^2

x2^2 - 111.017 x1^3 x2^2 + 1.09044*10^6 x2^3 - 31022.1 x1 x2^3 + 215.409 x1^2 x2^3 -

37.8209 x2^4 + 2.0234 x1 x2^4 - 0.215956 x2^5)

11-FOTN
0.0430751 + 0.000540109 x1 - 0.000323641 x2 + 0.00585602 Cos[x1] + 0.00280079 Cos[x2]

+ 0.0193855 Sin[x1] + 0.00101956 Sin[x2]

12-FOTNR

(734.927 - 6.06166 x1 - 0.432269 x2 + 9.69916 Cos[x1] + 32.9546 Cos[x2] + 51.4972 Sin[x1]

+ 25.9792 Sin[x2])/(10480.5 - 121.492 x1 + 64.8598 x2 - 273.649 Cos[x1] + 927.451 Cos[x2]

- 1148.84 Sin[x1] + 813.999 Sin[x2])

13-SOTN

0.00929899 + 0.00435651 Cos[x1] + 0.0102278 Cos[x1]^2 + 0.0131686 Cos[x2] +

0.00295636 Cos[x1] Cos[x2] + 0.0325674 Cos[x2]^2 + 0.00176438 Sin[x1] + 0.0200505

Sin[x1]^2 + 0.0122466 Sin[x2] - 0.00189071 Sin[x1] Sin[x2] - 0.00855751 Sin[x2]^2

14-SOTNR

(-258.448 + 21.5438 Cos[x1] - 129.705 Cos[x1]^2 + 19.7083 Cos[x2] + 41.9817 Cos[x1]

Cos[x2] + 414.254 Cos[x2]^2 + 16.956 Sin[x1] - 171.407 Sin[x1]^2 - 1.1461 Sin[x2] +

4.26493 Sin[x1] Sin[x2] + 414.151 Sin[x2]^2)/(98.2437 + 491.617 Cos[x1] + 172.357

Cos[x1]^2 + 672.438 Cos[x2] + 1355.71 Cos[x1] Cos[x2] + 153.666 Cos[x2]^2 - 456.082

Sin[x1] + 491.147 Sin[x1]^2 - 42.9708 Sin[x2] + 131.747 Sin[x1] Sin[x2] + 150.833

Sin[x2]^2)

15-TOTN

0.00893416 + 0.00183501 Cos[x1] + 0.0107546 Cos[x1]^2 + 0.00312068 Cos[x1]^3 -

0.00329505 Cos[x2] + 0.0049223 Cos[x1] Cos[x2] - 0.00895885 Cos[x1]^2 Cos[x2] +

0.0314299 Cos[x2]^2 + 0.0000174216 Cos[x1] Cos[x2]^2 + 0.0333626 Cos[x2]^3 -

0.000357978 Sin[x1] + 0.0156993 Sin[x1]^2 + 0.0107879 Sin[x1]^3 + 0.0392752 Sin[x2] +

0.00734724 Sin[x1] Sin[x2] - 0.0145669 Sin[x1]^2 Sin[x2] - 0.00836922 Sin[x2]^2 -

0.00510014 Sin[x1] Sin[x2]^2 - 0.0316106 Sin[x2]^3

16-TOTNR

(0.343026 + 1.02264 Cos[x1] - 0.420857 Cos[x1]^2 - 0.998823 Cos[x1]^3 + 0.118933

Cos[x2] + 0.0713686 Cos[x1] Cos[x2] - 0.0532898 Cos[x1]^2 Cos[x2] + 0.168127

Cos[x2]^2 - 0.00491018 Cos[x1] Cos[x2]^2 + 0.00859075 Cos[x2]^3 + 0.297465 Sin[x1] -

0.215802 Sin[x1]^2 + 0.166643 Sin[x1]^3 + 0.0390702 Sin[x2] + 0.256846 Sin[x1] Sin[x2]

+ 0.160711 Sin[x1]^2 Sin[x2] + 0.232336 Sin[x2]^2 + 0.253004 Sin[x1] Sin[x2]^2 +

0.00986226 Sin[x2]^3)/(1.49086 + 1.02933 Cos[x1] + 2.46228 Cos[x1]^2 + 2.42122

Cos[x1]^3 + 2.20341 Cos[x2] + 2.2127 Cos[x1] Cos[x2] - 0.220898 Cos[x1]^2 Cos[x2] -

0.210736 Cos[x2]^2 + 0.254794 Cos[x1] Cos[x2]^2 + 0.548699 Cos[x2]^3 + 1.67476 Sin[x1]

- 3.96066 Sin[x1]^2 + 6.48449 Sin[x1]^3 + 1.21535 Sin[x2] + 7.48491 Sin[x1] Sin[x2] +

0.426784 Sin[x1]^2 Sin[x2] + 1.60681 Sin[x2]^2 + 6.81565 Sin[x1] Sin[x2]^2 + 0.568696

Sin[x2]^3)

17-FOLN 0.164368 + 0.0115526 Log[x2] - 0.0299538 Log[x1]

18-FOLNR
(17.6768 + 75.113 Log[x2] - 2.82453 Log[x1])/(450.346 + 2046.83 Log[x2] - 67.5324

Log[x1])

19-SOLN
-3.29681 + 0.157466 Log[x2] + 0.0363563 Log[x2]^2 + 1.57489 Log[x1] - 0.0338237

Log[x2] Log[x1] - 0.186908 Log[x1]^2

20-SOLNR (2576.9 + 268.914 Log[x2] - 665.114 Log[x2]^2 - 1114.45 Log[x1] + 113.225 Log[x2]

75

Log[x1] + 114.51 Log[x1]^2)/(31721.2 + 20897.9 Log[x2] - 22743.8 Log[x2]^2 - 15020.9

Log[x1] + 1219.65 Log[x2] Log[x1] + 1590.41 Log[x1]^2)

21-SOTNR+LR

(-18.7362 - 0.166425 x1 + 0.00901176 x2 - 47.8773 Cos[x1] - 222.426 Cos[x1]^2 - 2.42156

Cos[x2] - 0.563979 Cos[x1] Cos[x2] + 164.961 Cos[x2]^2 - 220.975 Sin[x1] + 148.977

Sin[x1]^2 - 1.68722 Sin[x2] - 0.419271 Sin[x1] Sin[x2] + 159.28 Sin[x2]^2)/(97.0003 -

0.264921 x1 + 2.68138 x2 - 57.261 Cos[x1] - 303.388 Cos[x1]^2 - 38.4144 Cos[x2] - 2.55032

Cos[x1] Cos[x2] + 173.642 Cos[x2]^2 - 300.764 Sin[x1] + 231.043 Sin[x1]^2 - 45.1304

Sin[x2] - 14.989 Sin[x1] Sin[x2] + 14.1368 Sin[x2]^2)

22-TOTNR+LR

(966.203 - 9.52491 x1 + 0.378491 x2 + 388.441 Cos[x1] - 572.666 Cos[x1]^3 + 330.523

Cos[x2] + 17.3647 Cos[x1]^2 Cos[x2] + 201.684 Cos[x1] Cos[x2]^2 - 296.705 Cos[x2]^3 +

1538.79 Sin[x1] - 2585.88 Sin[x1]^3 + 9.37116 Sin[x2] - 346.448 Sin[x1]^2 Sin[x2] +

260.358 Sin[x1] Sin[x2]^2 - 239.921 Sin[x2]^3)/(-1395.73 - 22.6374 x1 + 9.19494 x2 -

3840.71 Cos[x1] - 2870.19 Cos[x1]^3 + 9026.66 Cos[x2] + 1950.67 Cos[x1]^2 Cos[x2] +

6612.66 Cos[x1] Cos[x2]^2 - 8202.05 Cos[x2]^3 - 340.877 Sin[x1] + 4485.9 Sin[x1]^3 +

2325.99 Sin[x2] - 11430.1 Sin[x1]^2 Sin[x2] + 10368.7 Sin[x1] Sin[x2]^2 - 11448.1

Sin[x2]^3)

23-SOLNR+LR

(-8402.26 + 7.47437 x1 + 0.0653856 x2 - 3.84301 Log[x2] - 3.08775 Log[x2]^2 + 4034.54

Log[x1] + 1.14012 Log[x2] Log[x1] - 516.418 Log[x1]^2)/(21040.3 + 87.4853 x1 - 13.9647

x2 - 193.175 Log[x2] - 304.049 Log[x2]^2 - 7253.85 Log[x1] + 38.5813 Log[x2] Log[x1] +

193.99 Log[x1]^2)

24-SOTN+TON

0.0242585 + 0.000288828 x1 + 3.29086*10^-6 x1^2 + 3.60585*10^-8 x1^3 - 0.00612441 x2

+ 0.000101852 x1 x2 - 6.36616*10^-7 x1^2 x2 + 0.0000104422 x2^2 - 4.06359*10^-10 x1

x2^2 - 1.65771*10^-8 x2^3 + 0.0084296 Cos[x1] + 0.0217793 Cos[x1]^2 - 0.00551218

Cos[x2] - 0.00356519 Cos[x1] Cos[x2] + 0.029913 Cos[x2]^2 + 0.024088 Sin[x1] +

0.0711347 Sin[x1]^2 - 0.00166752 Sin[x2] + 0.00509679 Sin[x1] Sin[x2] + 0.0355352

Sin[x2]^2

25-SOTNR+TONR

(-3.49694*10^7 - 406961. x1 + 3750.82 x1^2 - 9.74601 x1^3 - 560711. x2 + 19842.6 x1 x2 -

170.967 x1^2 x2 + 128.316 x2^2 + 9.97774 x1 x2^2 + 0.00310777 x2^3 - 4.52764*10^6

Cos[x1] + 5.03835*10^7 Cos[x1]^2 - 9785.99 Cos[x2] + 41072.4 Cos[x1] Cos[x2] -

5.63978*10^6 Cos[x2]^2 - 1.29297*10^7 Sin[x1] + 6.23008*10^7 Sin[x1]^2 - 416201.

Sin[x2] - 1.29779*10^6 Sin[x1] Sin[x2] - 4.81228*10^6 Sin[x2]^2)/(9.05751*10^6 +

212547. x1 - 3528.3 x1^2 - 35.6881 x1^3 + 153625. x2 - 14207.5 x1 x2 - 65.4825 x1^2 x2 +

9147.09 x2^2 + 14.98 x1 x2^2 + 205.039 x2^3 - 1.88911*10^7 Cos[x1] + 2.05798*10^7

Cos[x1]^2 - 1.70927*10^6 Cos[x2] + 15579.3 Cos[x1] Cos[x2] + 5.53372*10^6 Cos[x2]^2 -

1.03327*10^7 Sin[x1] - 5.01664*10^7 Sin[x1]^2 - 835075. Sin[x2] - 9.18073*10^6 Sin[x1]

Sin[x2] + 3.34294*10^7 Sin[x2]^2)

26-SOTN+4thON

0.0216462 + 0.00026166 x1 + 3.04521*10^-6 x1^2 + 3.43308*10^-8 x1^3 + 3.77622*10^-10

x1^4 - 0.0142937 x2 + 0.000181692 x1 x2 + 2.13653*10^-6 x1^2 x2 - 3.1564*10^-8 x1^3 x2

+ 0.0000702405 x2^2 - 1.89134*10^-6 x1 x2^2 + 1.49415*10^-8 x1^2 x2^2 + 2.70059*10^-

8 x2^3 - 7.83563*10^-10 x1 x2^3 + 2.3605*10^-11 x2^4 - 0.0018741 Cos[x1] + 0.0193819

Cos[x1]^2 - 0.00514511 Cos[x2] - 0.00266761 Cos[x1] Cos[x2] + 0.0271939 Cos[x2]^2 +

0.0269715 Sin[x1] + 0.0636743 Sin[x1]^2 + 0.000148422 Sin[x2] + 0.00425488 Sin[x1]

Sin[x2] + 0.0311808 Sin[x2]^2

27-SOTNR+4thONR

(-1.31971*10^6 - 36865.8 x1 - 826.838 x1^2 - 15.674 x1^3 + 0.68446 x1^4 - 74180.8 x2 +

55.8769 x1 x2 - 3.43203 x1^2 x2 + 0.549029 x1^3 x2 + 10.0705 x2^2 + 4.49059 x1 x2^2 -

0.431765 x1^2 x2^2 + 10.2347 x2^3 + 0.0010583 x1 x2^3 - 0.00421194 x2^4 +

6.43971*10^6 Cos[x1] - 1.4234*10^7 Cos[x1]^2 - 137290. Cos[x2] - 186692. Cos[x1]

Cos[x2] - 2.34878*10^6 Cos[x2]^2 + 6.54593*10^6 Sin[x1] + 5.78968*10^6 Sin[x1]^2 +

122803. Sin[x2] - 7933.64 Sin[x1] Sin[x2] - 2.49102*10^6 Sin[x2]^2)/(323246. - 25805. x1 -

1025.21 x1^2 - 27.6709 x1^3 + 0.295251 x1^4 - 929293. x2 - 3273.64 x1 x2 + 57.2448 x1^2

x2 + 1.95182 x1^3 x2 + 19620.2 x2^2 - 2.11836 x1 x2^2 - 0.138905 x1^2 x2^2 + 61.2094

x2^3 - 6.35111 x1 x2^3 + 2.32281 x2^4 + 9.20869*10^6 Cos[x1] - 4.16803*10^7 Cos[x1]^2 -

4.55693*10^6 Cos[x2] - 3.87484*10^6 Cos[x1] Cos[x2] + 1.12193*10^7 Cos[x2]^2 +

9.98668*10^6 Sin[x1] + 9.35622*10^6 Sin[x1]^2 + 500475. Sin[x2] + 768386. Sin[x1]

76

Sin[x2] + 1.7191*10^7 Sin[x2]^2)

28-SOTN+5thON

0.0192247 + 0.000232698 x1 + 2.7161*10^-6 x1^2 + 3.07678*10^-8 x1^3 + 3.40769*10^-10

x1^4 + 3.71669*10^-12 x1^5 - 0.00980464 x2 + 0.0000847625 x1 x2 + 1.77887*10^-6 x1^2

x2 + 7.33517*10^-9 x1^3 x2 - 3.35805*10^-10 x1^4 x2 + 0.0000191929 x2^2 - 1.01489*10^-

6 x1 x2^2 - 7.58966*10^-9 x1^2 x2^2 + 2.13689*10^-10 x1^3 x2^2 + 3.4126*10^-7 x2^3 +

1.90724*10^-9 x1 x2^3 - 5.81711*10^-11 x1^2 x2^3 - 1.43779*10^-9 x2^4 + 1.01356*10^-

11 x1 x2^4 + 9.38293*10^-13 x2^5 - 0.00485126 Cos[x1] + 0.0168508 Cos[x1]^2 -

0.00410729 Cos[x2] - 0.00216205 Cos[x1] Cos[x2] + 0.0265735 Cos[x2]^2 + 0.0270676

Sin[x1] + 0.0579445 Sin[x1]^2 + 0.00134839 Sin[x2] + 0.00433191 Sin[x1] Sin[x2] +

0.0251471 Sin[x2]^2

29-SOTNR+5thONR

(-1.03785*10^11 + 9.2379*10^8 x1 - 1.95606*10^6 x1^2 - 25154.9 x1^3 - 1836.71 x1^4 -

26.0788 x1^5 + 2.83175*10^9 x2 - 7.69131*10^6 x1 x2 - 471580. x1^2 x2 + 3.31497 x1^3 x2

+ 56.4355 x1^4 x2 + 2.76335*10^6 x2^2 + 242677. x1 x2^2 - 4100.68 x1^2 x2^2 + 68.3922

x1^3 x2^2 - 197728. x2^3 + 1723.64 x1 x2^3 - 77.9789 x1^2 x2^3 + 24.5249 x2^4 + 31.45

x1 x2^4 - 4.81977 x2^5 - 3.34911*10^10 Cos[x1] + 1.29286*10^11 Cos[x1]^2 -

1.14047*10^10 Cos[x2] - 4.19282*10^10 Cos[x1] Cos[x2] - 6.50039*10^10 Cos[x2]^2 -

1.85813*10^11 Sin[x1] + 2.7656*10^11 Sin[x1]^2 + 4.56726*10^9 Sin[x2] - 9.45237*10^9

Sin[x1] Sin[x2] - 4.61544*10^10 Sin[x2]^2)/(-3.30084*10^10 - 9.16298*10^8 x1 -

6.37993*10^6 x1^2 - 132335. x1^3 + 1586.72 x1^4 - 32.657 x1^5 - 2.95405*10^8 x2 +

4.19145*10^7 x1 x2 + 321145. x1^2 x2 - 10631.4 x1^3 x2 + 69.9187 x1^4 x2 + 7.62392*10^7

x2^2 + 1.58839*10^6 x1 x2^2 - 1953.08 x1^2 x2^2 + 157.939 x1^3 x2^2 + 486145. x2^3 +

5244.76 x1 x2^3 + 56.8884 x1^2 x2^3 - 10781.7 x2^4 - 146.16 x1 x2^4 - 73.3219 x2^5 +

4.29823*10^11 Cos[x1] - 1.04524*10^11 Cos[x1]^2 - 8.38238*10^10 Cos[x2] - 5.678*10^11

Cos[x1] Cos[x2] - 3.04898*10^11 Cos[x2]^2 + 1.8199*10^10 Sin[x1] - 1.16872*10^11

Sin[x1]^2 + 6.66474*10^10 Sin[x2] - 1.63002*10^11 Sin[x1] Sin[x2] - 5.33468*10^10

Sin[x2]^2)

30-TOTN+TON

0.0231692 + 0.000288138 x1 + 3.44854*10^-6 x1^2 + 3.99499*10^-8 x1^3 - 0.0041154 x2 +

0.0000462323 x1 x2 - 2.66919*10^-7 x1^2 x2 + 0.0000105009 x2^2 + 7.85453*10^-10 x1

x2^2 - 1.64354*10^-8 x2^3 + 0.0062655 Cos[x1] + 0.0246745 Cos[x1]^2 + 0.0121298

Cos[x1]^3 + 0.0037673 Cos[x2] - 0.00551644 Cos[x1] Cos[x2] - 0.0000432365 Cos[x1]^2

Cos[x2] + 0.027316 Cos[x2]^2 - 0.00854449 Cos[x1] Cos[x2]^2 - 0.0145653 Cos[x2]^3 +

0.00992135 Sin[x1] + 0.053064 Sin[x1]^2 + 0.0445347 Sin[x1]^3 + 0.00407067 Sin[x2] +

0.0236697 Sin[x1] Sin[x2] - 0.0343388 Sin[x1]^2 Sin[x2] + 0.0352573 Sin[x2]^2 -

0.00297197 Sin[x1] Sin[x2]^2 + 0.00349978 Sin[x2]^3

31-TOTNR+TONR

(-3.24149*10^6 - 68116.4 x1 - 712.916 x1^2 - 1.61768 x1^3 - 49929.1 x2 + 1642.83 x1 x2 -

10.6507 x1^2 x2 - 100.745 x2^2 - 0.680877 x1 x2^2 + 0.569521 x2^3 + 7.34784*10^6

Cos[x1] + 2.33948*10^7 Cos[x1]^2 - 1.20664*10^6 Cos[x1]^3 + 82229.1 Cos[x2] - 33225.2

Cos[x1] Cos[x2] - 18967.8 Cos[x1]^2 Cos[x2] + 6.11027*10^6 Cos[x2]^2 + 328062.

Cos[x1] Cos[x2]^2 - 35600.6 Cos[x2]^3 + 3.62624*10^7 Sin[x1] - 3.56356*10^7 Sin[x1]^2 -

6.90859*10^6 Sin[x1]^3 + 303112. Sin[x2] + 182152. Sin[x1] Sin[x2] - 380116. Sin[x1]^2

Sin[x2] + 5.42983*10^6 Sin[x2]^2 - 101146. Sin[x1] Sin[x2]^2 - 357317.

Sin[x2]^3)/(2.51257*10^7 + 76394.6 x1 - 1696.78 x1^2 - 3.86605 x1^3 - 3.56524*10^6 x2 +

119213. x1 x2 - 791.76 x1^2 x2 - 8604.48 x2^2 - 49.4245 x1 x2^2 + 48.4076 x2^3 -

4.53858*10^6 Cos[x1] - 3.93759*10^7 Cos[x1]^2 - 9.6657*10^6 Cos[x1]^3 + 6.68298*10^6

Cos[x2] - 1.50593*10^6 Cos[x1] Cos[x2] - 781698. Cos[x1]^2 Cos[x2] + 6.31412*10^6

Cos[x2]^2 + 6.63026*10^6 Cos[x1] Cos[x2]^2 - 3.67269*10^6 Cos[x2]^3 - 5.8536*10^6

Sin[x1] + 4.00963*10^7 Sin[x1]^2 - 7.44009*10^7 Sin[x1]^3 + 2.94271*10^7 Sin[x2] +

8.28418*10^6 Sin[x1] Sin[x2] - 1.30833*10^7 Sin[x1]^2 Sin[x2] - 2.40233*10^7 Sin[x2]^2 +

601430. Sin[x1] Sin[x2]^2 - 3.84775*10^7 Sin[x2]^3)

32-TOTN+4thON

0.0209952 + 0.000262927 x1 + 3.17656*10^-6 x1^2 + 3.72425*10^-8 x1^3 + 4.26648*10^-

10 x1^4 - 0.0116208 x2 + 0.000140702 x1 x2 + 1.6647*10^-6 x1^2 x2 - 2.5136*10^-8 x1^3

x2 + 0.0000598527 x2^2 - 1.52225*10^-6 x1 x2^2 + 1.2558*10^-8 x1^2 x2^2 +

9.08167*10^-9 x2^3 - 7.98576*10^-10 x1 x2^3 + 5.61846*10^-11 x2^4 + 0.000386313

Cos[x1] + 0.0221986 Cos[x1]^2 + 0.00487097 Cos[x1]^3 + 0.00847042 Cos[x2] -

0.00448216 Cos[x1] Cos[x2] - 0.00119968 Cos[x1]^2 Cos[x2] + 0.0255634 Cos[x2]^2 -

0.00408857 Cos[x1] Cos[x2]^2 - 0.0191194 Cos[x2]^3 + 0.0125526 Sin[x1] + 0.0487018

Sin[x1]^2 + 0.0444176 Sin[x1]^3 - 0.000441289 Sin[x2] + 0.0150495 Sin[x1] Sin[x2] -

0.0183494 Sin[x1]^2 Sin[x2] + 0.031097 Sin[x2]^2 - 0.00576173 Sin[x1] Sin[x2]^2 +

77

0.00680698 Sin[x2]^3

33-TOTNR+4thONR

(1.00032 + 1.01274 x1 + 1.38719 x1^2 + 6.40088 x1^3 + 0.522508 x1^4 + 1.00991 x2 +

1.34335 x1 x2 + 8.34394 x1^2 x2 - 1.75491 x1^3 x2 + 1.27284 x2^2 + 7.43434 x1 x2^2 +

1.40948 x1^2 x2^2 + 8.17719 x2^3 - 0.655218 x1 x2^3 + 0.138076 x2^4 + 0.995985

Cos[x1] + 0.999352 Cos[x1]^2 + 0.997066 Cos[x1]^3 + 0.999435 Cos[x2] + 1.00027

Cos[x1] Cos[x2] + 0.999701 Cos[x1]^2 Cos[x2] + 1.00033 Cos[x2]^2 + 0.99737 Cos[x1]

Cos[x2]^2 + 0.999562 Cos[x2]^3 + 1.00235 Sin[x1] + 1.00097 Sin[x1]^2 + 1.00121

Sin[x1]^3 + 1.00055 Sin[x2] + 2.00626 Sin[x1] Sin[x2] + 1.00095 Sin[x1]^2 Sin[x2] +

0.999987 Sin[x2]^2 + 1.00088 Sin[x1] Sin[x2]^2 + 1.00042 Sin[x2]^3)/(0.999929 +

0.996453 x1 + 0.844088 x1^2 - 4.07737 x1^3 + 4.36982 x1^4 + 0.997255 x2 + 0.873944 x1

x2 - 3.38736 x1^2 x2 - 8.82901 x1^3 x2 + 0.905885 x2^2 - 2.19621 x1 x2^2 + 8.93325

x1^2 x2^2 - 1.72324 x2^3 - 10.8257 x1 x2^3 + 8.25796 x2^4 + 1.00031 Cos[x1] + 1.00005

Cos[x1]^2 + 1.0002 Cos[x1]^3 + 1.00006 Cos[x2] + 1.00002 Cos[x1] Cos[x2] + 1.00004

Cos[x1]^2 Cos[x2] + 0.999964 Cos[x2]^2 + 1.00019 Cos[x1] Cos[x2]^2 + 1.00006

Cos[x2]^3 + 0.999765 Sin[x1] + 0.999881 Sin[x1]^2 + 0.999871 Sin[x1]^3 + 0.999882

Sin[x2] + 1.99932 Sin[x1] Sin[x2] + 0.999884 Sin[x1]^2 Sin[x2] + 0.999965 Sin[x2]^2 +

0.999905 Sin[x1] Sin[x2]^2 + 0.999917 Sin[x2]^3)

34-FOLNR+LR
(211.339 + 0.503878 x1 - 0.0194479 x2 + 0.535497 Log[x2] - 55.6631 Log[x1])/(-4679.47 -

21.0836 x1 + 1.69883 x2 + 15.6621 Log[x2] + 1464.27 Log[x1])

35-FOLN+SON
0.301894 - 0.00405219 x1 + 0.0000160018 x1^2 - 0.00163856 x2 + 5.6541*10^-6 x1 x2 +

2.90552*10^-6 x2^2 - 0.00330706 Log[x2] + 0.00916418 Log[x1]

36-FOLNR+SONR

(2.26714*10^7 - 116308. x1 + 979.434 x1^2 - 8113.61 x2 + 63.9685 x1 x2 + 28.2714 x2^2 -

33799.5 Log[x2] - 4.42467*10^6 Log[x1])/(3.09691*10^7 - 806338. x1 + 3837.83 x1^2 -

46345.5 x2 - 205.478 x1 x2 + 1919.68 x2^2 - 520826. Log[x2] + 2.58932*10^6 Log[x1])

37-FOLN+TON

0.561752 - 0.00736437 x1 - 0.000090157 x1^2 + 1.10707*10^-6 x1^3 - 0.00673525 x2 +

0.000121724 x1 x2 - 7.79189*10^-7 x1^2 x2 + 9.68359*10^-6 x2^2 + 4.68174*10^-9 x1

x2^2 - 1.58846*10^-8 x2^3 - 0.00371593 Log[x2] + 0.0385104 Log[x1]

38-FOLNR+TONR

(151482. - 2339.14 x1 - 12.7875 x1^2 + 0.284316 x1^3 - 3282.52 x2 + 91.3465 x1 x2 -

0.662545 x1^2 x2 + 0.0527751 x2^2 + 0.0231602 x1 x2^2 + 0.000976266 x2^3 + 263.509

Log[x2] - 4821.87 Log[x1])/(668968. - 20305.4 x1 + 17.4808 x1^2 + 1.19429 x1^3 +

11323.4 x2 - 267.232 x1 x2 + 1.49467 x1^2 x2 - 95.6669 x2^2 + 0.843192 x1 x2^2 +

0.565529 x2^3 + 6312.67 Log[x2] + 63917.2 Log[x1])

39-FOLN+4thON

0.592372 - 0.00551175 x1 - 0.000116077 x1^2 - 5.88615*10^-7 x1^3 + 1.81939*10^-8 x1^4 -

0.0151752 x2 + 0.000194591 x1 x2 + 2.28577*10^-6 x1^2 x2 - 3.36367*10^-8 x1^3 x2 +

0.0000745524 x2^2 - 2.00149*10^-6 x1 x2^2 + 1.56284*10^-8 x1^2 x2^2 + 2.45576*10^-8

x2^3 - 7.58509*10^-10 x1 x2^3 + 2.5168*10^-11 x2^4 - 0.00400813 Log[x2] + 0.0628062

Log[x1]

40-FOLNR+4thONR

(9.63872*10^6 - 76665.9 x1 - 1696.74 x1^2 - 35.3172 x1^3 + 0.614054 x1^4 - 403192. x2 +

5413.89 x1 x2 + 95.7471 x1^2 x2 - 1.337 x1^3 x2 + 2097.12 x2^2 - 66.9089 x1 x2^2 +

0.587559 x1^2 x2^2 + 0.022218 x2^3 - 0.0203753 x1 x2^3 + 0.00153669 x2^4 + 21242.7

Cos[x2] + 360674. Log[x1])/(2.91749*10^6 - 755722. x1 - 18905. x1^2 - 44.633 x1^3 +

2.87401 x1^4 - 307113. x2 + 8192.93 x1 x2 + 47.3433 x1^2 x2 - 1.73298 x1^3 x2 - 17417.2

x2^2 + 371.967 x1 x2^2 - 1.72806 x1^2 x2^2 - 99.4177 x2^3 + 1.90221 x1 x2^3 - 0.147357

x2^4 + 276417. Cos[x2] + 2.12239*10^7 Log[x1])

78

Appendix D

Results of the Neuro-regression

models boundedness

 ENERGY (kWh) MOISTURE (%)

 Min Max Min Max

1-L -3.09002 51.2355 -0.0192 0.0904

2-LR -0.08642 53.5356 -0.0001 0.1532

3-SON -1.3751 54.0085 -0.0007 0.1424

4-SONR -0.5055 54.4104 0.0111 0.1473

5-TON -0.7882 54.5859 0.0058 0.1640

6-TONR -0.6734 55.1037 0.0088 0.1546

7-4thON -0.6496 55.1424 -0.0042 0.1649

8-4thONR 0.1636 1.3*10^13 0.0111 0.1506

9-5thON -0.6505 54.3461 0.0053 0.1587

10-5thONR -0.2997 55.0832 -5.1*10^11 5.7*10^9

11-FOTN -2.2222 51.7891 -0.0198 0.0938

12-FOTNR -2.1*10^16 40.1728 0.0015 0.4168

13-SOTN 12.8151 41.8999 -0.0064 0.0786

14-SOTNR -2.4*10^15 7.6*10^12 -2.6*10^10 4.4*10^13

15-TOTN 13.1550 49.8808 -0.0024 0.0864

16-TOTNR -2.9*10^12 8.2*10^15 -2.2*10^9 2.8*10^11

17-FOLN 18.0854 30.4703 0.0197 0.0508

18-FOLNR 19.6278 26.7954 -2.6*10^8 4.6*10^10

19-SOLN 10.0695 35.0202 0.0105 0.0730

79

20-SOLNR -3.0*10^12 6.1*10^13 -6.5*10^10 0.0312

21-SOTNR+LR -5.4*10^14 3.2*10^14 -2.2101 2.5*10^12

22-TOTNR+LR -1.4*10^14 4.8*10^14 -1.6*10^12 5.0*10^11

23-SOLNR+LR -0.3982 54.0859 0.0038 0.3769

24-SOTN+TON -0.5119 54.3952 -0.0426 0.1030

25-SOTNR+TONR -1.8*10^15 1.4*10^16 -3.9*10^13 7.8*10^11

26-SOTN+4thON 0.1518 54.9578 -0.0293 0.1145

27-SOTNR+4thONR -1.2*10^15 55.4625 0.0083 3.3*10^13

28-SOTN+5thON -0.5750 54.3692 -0.0239 0.1642

29-SOTNR+5thONR -1.1*10^12 1.6*10^15 -3.0*10^11 5.1*10^11

30-TOTN+TON -0.9122 54.2703 -0.0952 0.1740

31-TOTNR+TONR -5.6*10^13 1.8855 -1.1*10^15 1.0*10^12

32-TOTN+4thON -0.1967 55.6535 0.0115 0.1123

33-TOTNR+4thONR -0.3925 53.6216 -0.0622 0.1442

34-FOLNR+LR -0.3954 54.1126 0.0010 0.2137

35-FOLN+SON -1.2837 54.0115 -0.0048 0.1410

36-FOLNR+SONR -1.9140 55.0628 -2.6*10^8 4.6*10^10

37-FOLN+TON -0.7415 54.6143 0.0083 0.1632

38-FOLNR+TONR -0.6601 55.1064 0.0100 0.2248

39-FOLN+4thON -0.5748 55.1514 -0.0070 0.1649

40-FOLNR+4thONR -0.6628 3.6*10^12 -13728.6 0.1707

80

Curriculum Vitae

Name Surname : Mustafa Dinç

Education:

2014 - 2020 B.Sc. / Izmir Katip Celebi University, Dept. of Mechanical Eng.

2020 - 2023 MSc. / Izmir Katip Celebi University, Dept. of Mechanical Eng.

Work Experience:

2021 – ERMETAL A.Ş – Design and Analysis Engineer - Bursa

